[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i13p2568-d245460.html
   My bibliography  Save this article

Hybrid Bio-Inspired Computational Heuristic Paradigm for Integrated Load Dispatch Problems Involving Stochastic Wind

Author

Listed:
  • Raheela Jamal

    (Beijing Key Laboratory of Energy Safety and Clean Utilization, North China Electric Power University, Renewable Energy School, Beijing 102206, China)

  • Baohui Men

    (Beijing Key Laboratory of Energy Safety and Clean Utilization, North China Electric Power University, Renewable Energy School, Beijing 102206, China)

  • Noor Habib Khan

    (Beijing Key Laboratory of Energy Safety and Clean Utilization, North China Electric Power University, Renewable Energy School, Beijing 102206, China)

  • Muhammad Asif Zahoor Raja

    (Department of Electrical and Computer Engineering, COMSATS University Islamabad, Attock Campus, Attock 43600, Pakistan)

Abstract
In this research work, bio-inspired computational heuristic algorithms (BCHAs) integrated with active-set algorithms (ASA) were designed to study integrated economics load dispatch problems with valve point effects involving stochastic wind power. These BCHAs are developed through variants of genetic algorithms based on a different set of routines for reproduction operators in order to make exploration and exploitation in the entire search space for finding the global optima, while the ASA is used for rapid local refinements of the results. The designed schemes are estimated on different load dispatch systems consisting of a combination of thermal generating units and wind power plants with and without valve point loading effects. The accuracy, convergence, robustness and complexity of the proposed schemes has been examined through comparative studies based on a sufficiently large number of independent trails and their statistical observations in terms of different performance indices.

Suggested Citation

  • Raheela Jamal & Baohui Men & Noor Habib Khan & Muhammad Asif Zahoor Raja, 2019. "Hybrid Bio-Inspired Computational Heuristic Paradigm for Integrated Load Dispatch Problems Involving Stochastic Wind," Energies, MDPI, vol. 12(13), pages 1-23, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:13:p:2568-:d:245460
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/13/2568/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/13/2568/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Xu & Xu, Bin & Mei, Congli & Ding, Yuhan & Li, Kangji, 2018. "Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation," Applied Energy, Elsevier, vol. 212(C), pages 1578-1588.
    2. Alfredo Alcayde & Raul Baños & Francisco M. Arrabal-Campos & Francisco G. Montoya, 2019. "Optimization of the Contracted Electric Power by Means of Genetic Algorithms," Energies, MDPI, vol. 12(7), pages 1-13, April.
    3. Li, M.S. & Lin, Z.J. & Ji, T.Y. & Wu, Q.H., 2018. "Risk constrained stochastic economic dispatch considering dependence of multiple wind farms using pair-copula," Applied Energy, Elsevier, vol. 226(C), pages 967-978.
    4. Zou, Dexuan & Li, Steven & Wang, Gai-Ge & Li, Zongyan & Ouyang, Haibin, 2016. "An improved differential evolution algorithm for the economic load dispatch problems with or without valve-point effects," Applied Energy, Elsevier, vol. 181(C), pages 375-390.
    5. Chen, Wei-Hsin & Wu, Po-Hua & Lin, Yu-Li, 2018. "Performance optimization of thermoelectric generators designed by multi-objective genetic algorithm," Applied Energy, Elsevier, vol. 209(C), pages 211-223.
    6. Azizipanah-Abarghooee, Rasoul & Niknam, Taher & Roosta, Alireza & Malekpour, Ahmad Reza & Zare, Mohsen, 2012. "Probabilistic multiobjective wind-thermal economic emission dispatch based on point estimated method," Energy, Elsevier, vol. 37(1), pages 322-335.
    7. Jaber Valinejad & Mousa Marzband & Mudathir Funsho Akorede & Ian D Elliott & Radu Godina & João Carlos de Oliveira Matias & Edris Pouresmaeil, 2018. "Long-Term Decision on Wind Investment with Considering Different Load Ranges of Power Plant for Sustainable Electricity Energy Market," Sustainability, MDPI, vol. 10(10), pages 1-19, October.
    8. Wang, Wenxiao & Li, Chaoshun & Liao, Xiang & Qin, Hui, 2017. "Study on unit commitment problem considering pumped storage and renewable energy via a novel binary artificial sheep algorithm," Applied Energy, Elsevier, vol. 187(C), pages 612-626.
    9. Abdelaziz, A.Y. & Ali, E.S. & Abd Elazim, S.M., 2016. "Implementation of flower pollination algorithm for solving economic load dispatch and combined economic emission dispatch problems in power systems," Energy, Elsevier, vol. 101(C), pages 506-518.
    10. Ma, Haiping & Yang, Zhile & You, Pengcheng & Fei, Minrui, 2017. "Multi-objective biogeography-based optimization for dynamic economic emission load dispatch considering plug-in electric vehicles charging," Energy, Elsevier, vol. 135(C), pages 101-111.
    11. Marzband, Mousa & Azarinejadian, Fatemeh & Savaghebi, Mehdi & Pouresmaeil, Edris & Guerrero, Josep M. & Lightbody, Gordon, 2018. "Smart transactive energy framework in grid-connected multiple home microgrids under independent and coalition operations," Renewable Energy, Elsevier, vol. 126(C), pages 95-106.
    12. Adarsh, B.R. & Raghunathan, T. & Jayabarathi, T. & Yang, Xin-She, 2016. "Economic dispatch using chaotic bat algorithm," Energy, Elsevier, vol. 96(C), pages 666-675.
    13. Joanna Ferdyn-Grygierek & Krzysztof Grygierek, 2017. "Multi-Variable Optimization of Building Thermal Design Using Genetic Algorithms," Energies, MDPI, vol. 10(10), pages 1-20, October.
    14. Jebaraj, Luke & Venkatesan, Chakkaravarthy & Soubache, Irisappane & Rajan, Charles Christober Asir, 2017. "Application of differential evolution algorithm in static and dynamic economic or emission dispatch problem: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1206-1220.
    15. Gonggui Chen & Zhengmei Lu & Zhizhong Zhang, 2018. "Improved Krill Herd Algorithm with Novel Constraint Handling Method for Solving Optimal Power Flow Problems," Energies, MDPI, vol. 11(1), pages 1-27, January.
    16. Masoumeh Javadi & Mousa Marzband & Mudathir Funsho Akorede & Radu Godina & Ameena Saad Al-Sumaiti & Edris Pouresmaeil, 2018. "A Centralized Smart Decision-Making Hierarchical Interactive Architecture for Multiple Home Microgrids in Retail Electricity Market," Energies, MDPI, vol. 11(11), pages 1-22, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yue Cao & Tao Li & Tianyu He & Yuwei Wei & Ming Li & Fengqi Si, 2022. "Multiobjective Load Dispatch for Coal-Fired Power Plants under Renewable-Energy Accommodation Based on a Nondominated-Sorting Grey Wolf Optimizer Algorithm," Energies, MDPI, vol. 15(8), pages 1-19, April.
    2. Mehmood, Ammara & Raja, Muhammad Asif Zahoor & Ninness, Brett, 2024. "Design of fractional-order hammerstein control auto-regressive model for heat exchanger system identification: Treatise on fuzzy-evolutionary computing," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    3. Sabir, Zulqurnain & Raja, Muhammad Asif Zahoor & Khalique, Chaudry Masood & Unlu, Canan, 2021. "Neuro-evolution computing for nonlinear multi-singular system of third order Emden–Fowler equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 799-812.
    4. Sabir, Zulqurnain & Saoud, Sahar & Raja, Muhammad Asif Zahoor & Wahab, Hafiz Abdul & Arbi, Adnène, 2020. "Heuristic computing technique for numerical solutions of nonlinear fourth order Emden–Fowler equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 534-548.
    5. Mehmood, Ammara & Raja, Muhammad Asif Zahoor & Jalili, Mahdi, 2023. "Optimization of integrated load dispatch in multi-fueled renewable rich power systems using fractal firefly algorithm," Energy, Elsevier, vol. 278(PA).
    6. Umar, Muhammad & Sabir, Zulqurnain & Raja, Muhammad Asif Zahoor & Aguilar, J.F. Gómez & Amin, Fazli & Shoaib, Muhammad, 2021. "Neuro-swarm intelligent computing paradigm for nonlinear HIV infection model with CD4+ T-cells," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 241-253.
    7. Xue Lin & Lixia Sun & Ping Ju & Hongyu Li, 2019. "Stochastic Control for Intra-Region Probability Maximization of Multi-Machine Power Systems Based on the Quasi-Generalized Hamiltonian Theory," Energies, MDPI, vol. 13(1), pages 1-16, December.
    8. Mehmood, Ammara & Raja, Muhammad Asif Zahoor, 2022. "Fuzzy-weighted differential evolution computing paradigm for fractional order nonlinear wiener systems," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chaoshun & Wang, Wenxiao & Chen, Deshu, 2019. "Multi-objective complementary scheduling of hydro-thermal-RE power system via a multi-objective hybrid grey wolf optimizer," Energy, Elsevier, vol. 171(C), pages 241-255.
    2. Arsalan Najafi & Mousa Marzband & Behnam Mohamadi-Ivatloo & Javier Contreras & Mahdi Pourakbari-Kasmaei & Matti Lehtonen & Radu Godina, 2019. "Uncertainty-Based Models for Optimal Management of Energy Hubs Considering Demand Response," Energies, MDPI, vol. 12(8), pages 1-20, April.
    3. Zhang, Le & Khishe, Mohammad & Mohammadi, Mokhtar & Mohammed, Adil Hussein, 2022. "Environmental economic dispatch optimization using niching penalized chimp algorithm," Energy, Elsevier, vol. 261(PA).
    4. Md Shafiul Alam & Mohammad Ali Yousef Abido & Alaa El-Din Hussein & Ibrahim El-Amin, 2019. "Fault Ride through Capability Augmentation of a DFIG-Based Wind Integrated VSC-HVDC System with Non-Superconducting Fault Current Limiter," Sustainability, MDPI, vol. 11(5), pages 1-23, February.
    5. Chen, Min-Rong & Zeng, Guo-Qiang & Lu, Kang-Di, 2019. "Constrained multi-objective population extremal optimization based economic-emission dispatch incorporating renewable energy resources," Renewable Energy, Elsevier, vol. 143(C), pages 277-294.
    6. Lihui Zhang & He Xin & Zhinan Kan, 2019. "Sustainability Performance Evaluation of Hybrid Energy System Using an Improved Fuzzy Synthetic Evaluation Approach," Sustainability, MDPI, vol. 11(5), pages 1-19, February.
    7. Jaber Valinejad & Mousa Marzband & Michael Elsdon & Ameena Saad Al-Sumaiti & Taghi Barforoushi, 2019. "Dynamic Carbon-Constrained EPEC Model for Strategic Generation Investment Incentives with the Aim of Reducing CO 2 Emissions," Energies, MDPI, vol. 12(24), pages 1-35, December.
    8. Morshed, Mohammad Javad & Hmida, Jalel Ben & Fekih, Afef, 2018. "A probabilistic multi-objective approach for power flow optimization in hybrid wind-PV-PEV systems," Applied Energy, Elsevier, vol. 211(C), pages 1136-1149.
    9. Vikram Kumar Kamboj & Challa Leela Kumari & Sarbjeet Kaur Bath & Deepak Prashar & Mamoon Rashid & Sultan S. Alshamrani & Ahmed Saeed AlGhamdi, 2022. "A Cost-Effective Solution for Non-Convex Economic Load Dispatch Problems in Power Systems Using Slime Mould Algorithm," Sustainability, MDPI, vol. 14(5), pages 1-36, February.
    10. Yu, Xiaobing & Duan, Yuchen & Luo, Wenguan, 2022. "A knee-guided algorithm to solve multi-objective economic emission dispatch problem," Energy, Elsevier, vol. 259(C).
    11. Biswas, Partha P. & Suganthan, P.N. & Qu, B.Y. & Amaratunga, Gehan A.J., 2018. "Multiobjective economic-environmental power dispatch with stochastic wind-solar-small hydro power," Energy, Elsevier, vol. 150(C), pages 1039-1057.
    12. Antonio Bracale & Guido Carpinelli & Pasquale De Falco, 2019. "Developing and Comparing Different Strategies for Combining Probabilistic Photovoltaic Power Forecasts in an Ensemble Method," Energies, MDPI, vol. 12(6), pages 1-16, March.
    13. Xu, Shengping & Xiong, Guojiang & Mohamed, Ali Wagdy & Bouchekara, Houssem R.E.H., 2022. "Forgetting velocity based improved comprehensive learning particle swarm optimization for non-convex economic dispatch problems with valve-point effects and multi-fuel options," Energy, Elsevier, vol. 256(C).
    14. Zou, Dexuan & Li, Steven & Kong, Xiangyong & Ouyang, Haibin & Li, Zongyan, 2019. "Solving the combined heat and power economic dispatch problems by an improved genetic algorithm and a new constraint handling strategy," Applied Energy, Elsevier, vol. 237(C), pages 646-670.
    15. Secui, Dinu Calin, 2016. "A modified Symbiotic Organisms Search algorithm for large scale economic dispatch problem with valve-point effects," Energy, Elsevier, vol. 113(C), pages 366-384.
    16. Karar Mahmoud & Mohamed Abdel-Nasser & Eman Mustafa & Ziad M. Ali, 2020. "Improved Salp–Swarm Optimizer and Accurate Forecasting Model for Dynamic Economic Dispatch in Sustainable Power Systems," Sustainability, MDPI, vol. 12(2), pages 1-21, January.
    17. Yang, Wenqiang & Zhu, Xinxin & Xiao, Qinge & Yang, Zhile, 2023. "Enhanced multi-objective marine predator algorithm for dynamic economic-grid fluctuation dispatch with plug-in electric vehicles," Energy, Elsevier, vol. 282(C).
    18. Weiliang Wang & Dan Wang & Liu Liu & Hongjie Jia & Yunqiang Zhi & Zhengji Meng & Wei Du, 2019. "Research on Modeling and Hierarchical Scheduling of a Generalized Multi-Source Energy Storage System in an Integrated Energy Distribution System," Energies, MDPI, vol. 12(2), pages 1-28, January.
    19. Le Chi Kien & Thang Trung Nguyen & Chiem Trong Hien & Minh Quan Duong, 2019. "A Novel Social Spider Optimization Algorithm for Large-Scale Economic Load Dispatch Problem," Energies, MDPI, vol. 12(6), pages 1-26, March.
    20. Chen, Xu, 2020. "Novel dual-population adaptive differential evolution algorithm for large-scale multi-fuel economic dispatch with valve-point effects," Energy, Elsevier, vol. 203(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:13:p:2568-:d:245460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.