[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i5p1161-d144853.html
   My bibliography  Save this article

Direct-Lyapunov-Based Control Scheme for Voltage Regulation in a Three-Phase Islanded Microgrid with Renewable Energy Sources

Author

Listed:
  • Hadi Hosseini Kordkheili

    (Faculty of Electrical and Robotic Engineering, Shahrood University of Technology, Shahrood 3619995161, Iran)

  • Mahdi Banejad

    (Faculty of Electrical and Robotic Engineering, Shahrood University of Technology, Shahrood 3619995161, Iran)

  • Ali Akbarzadeh Kalat

    (Faculty of Electrical and Robotic Engineering, Shahrood University of Technology, Shahrood 3619995161, Iran)

  • Edris Pouresmaeil

    (Department of Electrical Engineering and Automation, Aalto University, 02150 Espoo, Finland)

  • João P. S. Catalão

    (INESC TEC, Faculty of Engineering, University of Porto, Porto 4200-465, Portugal
    C-MAST, University of Beira Interior, Covilhã 6201-001, Portugal
    INESC-ID, Instituto Superior Técnico, University of Lisbon, Lisbon 1049-001, Portugal)

Abstract
In this paper, the local control structure of a microgrid is partially modified by a Lyapunov-based controller. This controller is derived based on direct Lyapunov stability theory (DLST) in order to calculate proper switching functions for the stable operation of the local controller as well as proper local performance of each inverter-based distributed generation (DG) unit. The main contribution is the use of DLST-based controller in a hierarchical primary control structure along with a DC-side voltage regulator. A current-based droop controller is also introduced along with a voltage harmonic compensation technique. The control limits of droop equations are calculated based on steady-state and dynamic capability curve as well as voltage-frequency ellipse curve. The effect of the variations of voltages and circuit parameters on the capability curves are also investigated and the microgrid (MG) steady-state operation area is obtained. In the proposed method, the DC-voltage variations are regulated by an additional voltage control loop based on a current reference correction signal. The above-mentioned approaches are derived thoroughly with mathematical equations. The effectiveness of the designed controllers is verified by a MATLAB/SIMULINK simulation platform (Matlab/Simulink R2014a, Mathworks, Inc.) with harmonically distorted intermittent loads. The results show the appropriate performance of the proposed controllers during both steady-state and transient dynamic conditions.

Suggested Citation

  • Hadi Hosseini Kordkheili & Mahdi Banejad & Ali Akbarzadeh Kalat & Edris Pouresmaeil & João P. S. Catalão, 2018. "Direct-Lyapunov-Based Control Scheme for Voltage Regulation in a Three-Phase Islanded Microgrid with Renewable Energy Sources," Energies, MDPI, vol. 11(5), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1161-:d:144853
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/5/1161/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/5/1161/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yin, Xiu-xing & Lin, Yong-gang & Li, Wei & Gu, Ya-jing & Liu, Hong-wei & Lei, Peng-fei, 2015. "A novel fuzzy integral sliding mode current control strategy for maximizing wind power extraction and eliminating voltage harmonics," Energy, Elsevier, vol. 85(C), pages 677-686.
    2. Mehrasa, Majid & Pouresmaeil, Edris & Akorede, Mudathir Funsho & Jørgensen, Bo Nørregaard & Catalão, João P.S., 2015. "Multilevel converter control approach of active power filter for harmonics elimination in electric grids," Energy, Elsevier, vol. 84(C), pages 722-731.
    3. Akorede, Mudathir Funsho & Hizam, Hashim & Pouresmaeil, Edris, 2010. "Distributed energy resources and benefits to the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 724-734, February.
    4. Planas, Estefanía & Gil-de-Muro, Asier & Andreu, Jon & Kortabarria, Iñigo & Martínez de Alegría, Iñigo, 2013. "General aspects, hierarchical controls and droop methods in microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 147-159.
    5. Mehrasa, Majid & Pouresmaeil, Edris & Zabihi, Sasan & Rodrigues, Eduardo M.G. & Catalão, João P.S., 2016. "A control strategy for the stable operation of shunt active power filters in power grids," Energy, Elsevier, vol. 96(C), pages 325-334.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weipeng Yang & Hang Zhang & Jungang Li & Aimin Zhang & Yunhong Zhou & Jianhua Wang, 2018. "PIDR Sliding Mode Current Control with Online Inductance Estimator for VSC-MVDC System Converter Stations under Unbalanced Grid Voltage Conditions," Energies, MDPI, vol. 11(10), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthias Schiesser & Sébastien Wasterlain & Mario Marchesoni & Mauro Carpita, 2018. "A Simplified Design Strategy for Multi-Resonant Current Control of a Grid-Connected Voltage Source Inverter with an LCL Filter," Energies, MDPI, vol. 11(3), pages 1-15, March.
    2. Irfan, Muhammad & Iqbal, Jamshed & Iqbal, Adeel & Iqbal, Zahid & Riaz, Raja Ali & Mehmood, Adeel, 2017. "Opportunities and challenges in control of smart grids – Pakistani perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 652-674.
    3. Nomaguchi, Yutaka & Tanaka, Hiroki & Sakakibara, Akiyuki & Fujita, Kikuo & Kishita, Yusuke & Hara, Keishiro & Uwasu, Michinori, 2017. "Integrated planning of low-voltage power grids and subsidies toward a distributed generation system – Case study of the diffusion of photovoltaics in a Japanese dormitory town," Energy, Elsevier, vol. 140(P1), pages 779-793.
    4. Zafari, A. & Jazaeri, M., 2017. "Conceptual design of an efficient unified shunt active power filter based on voltage and current source converters," Energy, Elsevier, vol. 119(C), pages 911-925.
    5. Zhang, Guidong & Li, Zhong & Zhang, Bo & Halang, Wolfgang A., 2018. "Power electronics converters: Past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2028-2044.
    6. Planas, Estefanía & Andreu, Jon & Gárate, José Ignacio & Martínez de Alegría, Iñigo & Ibarra, Edorta, 2015. "AC and DC technology in microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 726-749.
    7. Zheng Gong & Qi Cui & Xi Zheng & Peng Dai & Rongwu Zhu, 2018. "An Improved Imperialist Competitive Algorithm to Solve the Selected Harmonic Elimination Pulse-Width Modulation in Multilevel Converters," Energies, MDPI, vol. 11(11), pages 1-16, November.
    8. Yanine, Franco F. & Sauma, Enzo E., 2013. "Review of grid-tie micro-generation systems without energy storage: Towards a new approach to sustainable hybrid energy systems linked to energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 60-95.
    9. Cheng-I Chen & Chien-Kai Lan & Yeong-Chin Chen & Chung-Hsien Chen, 2019. "Adaptive Frequency-Based Reference Compensation Current Control Strategy of Shunt Active Power Filter for Unbalanced Nonlinear Loads," Energies, MDPI, vol. 12(16), pages 1-14, August.
    10. Mehrasa, Majid & Pouresmaeil, Edris & Zabihi, Sasan & Rodrigues, Eduardo M.G. & Catalão, João P.S., 2016. "A control strategy for the stable operation of shunt active power filters in power grids," Energy, Elsevier, vol. 96(C), pages 325-334.
    11. Yi, Ji Hyun & Ko, Woong & Park, Jong-Keun & Park, Hyeongon, 2018. "Impact of carbon emission constraint on design of small scale multi-energy system," Energy, Elsevier, vol. 161(C), pages 792-808.
    12. Gimara Rajapakse & Shantha Jayasinghe & Alan Fleming & Michael Negnevitsky, 2017. "A Model Predictive Control-Based Power Converter System for Oscillating Water Column Wave Energy Converters," Energies, MDPI, vol. 10(10), pages 1-17, October.
    13. Domenech, B. & Ferrer-Martí, L. & Pastor, R., 2015. "Including management and security of supply constraints for designing stand-alone electrification systems in developing countries," Renewable Energy, Elsevier, vol. 80(C), pages 359-369.
    14. Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I., 2013. "Energy trends in Palestinian territories of West Bank and Gaza Strip: Possibilities for reducing the reliance on external energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 117-129.
    15. Chandel, S.S. & Shrivastva, Rajnish & Sharma, Vikrant & Ramasamy, P., 2016. "Overview of the initiatives in renewable energy sector under the national action plan on climate change in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 866-873.
    16. Urooj Javed & Saif Ullah & Muhammad Imran & Asif Iqbal Malik & Nokhaiz Tariq Khan, 2021. "Power Distribution Network Expansion and Location Optimization of Additional Facilities: A Case Study," Sustainability, MDPI, vol. 13(14), pages 1-26, July.
    17. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    18. Bui, Duong Minh & Chen, Shi-Lin & Lien, Keng-Yu & Chang, Yung-Ruei & Lee, Yih-Der & Jiang, Jheng-Lun, 2017. "Investigation on transient behaviours of a uni-grounded low-voltage AC microgrid and evaluation on its available fault protection methods: Review and proposals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1417-1452.
    19. Moroni, Stefano & Antoniucci, Valentina & Bisello, Adriano, 2016. "Energy sprawl, land taking and distributed generation: towards a multi-layered density," Energy Policy, Elsevier, vol. 98(C), pages 266-273.
    20. Yuan, Xiaohui & Chen, Zhihuan & Yuan, Yanbin & Huang, Yuehua, 2015. "Design of fuzzy sliding mode controller for hydraulic turbine regulating system via input state feedback linearization method," Energy, Elsevier, vol. 93(P1), pages 173-187.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1161-:d:144853. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.