[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i10p1453-d112757.html
   My bibliography  Save this article

Forecasting of Chinese Primary Energy Consumption in 2021 with GRU Artificial Neural Network

Author

Listed:
  • Bingchun Liu

    (Research Institute of Circular Economy, Tianjin University of Technology, Tianjin 300384, China)

  • Chuanchuan Fu

    (Research Institute of Circular Economy, Tianjin University of Technology, Tianjin 300384, China)

  • Arlene Bielefield

    (Department of Information and Library Science, Southern Connecticut State University, New Haven, CT 06514, USA)

  • Yan Quan Liu

    (Research Institute of Circular Economy, Tianjin University of Technology, Tianjin 300384, China
    Department of Information and Library Science, Southern Connecticut State University, New Haven, CT 06514, USA)

Abstract
The forecasting of energy consumption in China is a key requirement for achieving national energy security and energy planning. In this study, multi-variable linear regression (MLR) and support vector regression (SVR) were utilized with a gated recurrent unit (GRU) artificial neural network of Chinese energy to establish a forecasting model. The derived model was validated through four economic variables; the gross domestic product (GDP), population, imports, and exports. The performance of various forecasting models was assessed via MAPE and RMSE, and three scenarios were configured based on different sources of variable data. In predicting Chinese energy consumption from 2015 to 2021, results from the established GRU model of the highest predictive accuracy showed that Chinese energy consumption would be likely to fluctuate from 2954.04 Mtoe to 5618.67 Mtoe in 2021.

Suggested Citation

  • Bingchun Liu & Chuanchuan Fu & Arlene Bielefield & Yan Quan Liu, 2017. "Forecasting of Chinese Primary Energy Consumption in 2021 with GRU Artificial Neural Network," Energies, MDPI, vol. 10(10), pages 1-15, September.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1453-:d:112757
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/10/1453/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/10/1453/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. ToksarI, M. Duran, 2009. "Estimating the net electricity energy generation and demand using the ant colony optimization approach: Case of Turkey," Energy Policy, Elsevier, vol. 37(3), pages 1181-1187, March.
    2. AlRashidi, M.R. & EL-Naggar, K.M., 2010. "Long term electric load forecasting based on particle swarm optimization," Applied Energy, Elsevier, vol. 87(1), pages 320-326, January.
    3. Geem, Zong Woo & Roper, William E., 2009. "Energy demand estimation of South Korea using artificial neural network," Energy Policy, Elsevier, vol. 37(10), pages 4049-4054, October.
    4. Ratnakar Pani & Ujjaini Mukhopadhyay, 2010. "Identifying the major players behind increasing global carbon dioxide emissions: a decomposition analysis," Environment Systems and Decisions, Springer, vol. 30(2), pages 183-205, June.
    5. Jain, Rishee K. & Smith, Kevin M. & Culligan, Patricia J. & Taylor, John E., 2014. "Forecasting energy consumption of multi-family residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy," Applied Energy, Elsevier, vol. 123(C), pages 168-178.
    6. Ekonomou, L., 2010. "Greek long-term energy consumption prediction using artificial neural networks," Energy, Elsevier, vol. 35(2), pages 512-517.
    7. Egelioglu, F. & Mohamad, A.A. & Guven, H., 2001. "Economic variables and electricity consumption in Northern Cyprus," Energy, Elsevier, vol. 26(4), pages 355-362.
    8. Li, Qiong & Meng, Qinglin & Cai, Jiejin & Yoshino, Hiroshi & Mochida, Akashi, 2009. "Applying support vector machine to predict hourly cooling load in the building," Applied Energy, Elsevier, vol. 86(10), pages 2249-2256, October.
    9. O'Neill, Brian C. & Desai, Mausami, 2005. "Accuracy of past projections of US energy consumption," Energy Policy, Elsevier, vol. 33(8), pages 979-993, May.
    10. Pao, Hsiao-Tien & Fu, Hsin-Chia & Tseng, Cheng-Lung, 2012. "Forecasting of CO2 emissions, energy consumption and economic growth in China using an improved grey model," Energy, Elsevier, vol. 40(1), pages 400-409.
    11. Wang, Yanjia & Gu, Alun & Zhang, Aling, 2011. "Recent development of energy supply and demand in China, and energy sector prospects through 2030," Energy Policy, Elsevier, vol. 39(11), pages 6745-6759.
    12. Liu, Xiuli & Moreno, Blanca & García, Ana Salomé, 2016. "A grey neural network and input-output combined forecasting model. Primary energy consumption forecasts in Spanish economic sectors," Energy, Elsevier, vol. 115(P1), pages 1042-1054.
    13. Torrini, Fabiano Castro & Souza, Reinaldo Castro & Cyrino Oliveira, Fernando Luiz & Moreira Pessanha, Jose Francisco, 2016. "Long term electricity consumption forecast in Brazil: A fuzzy logic approach," Socio-Economic Planning Sciences, Elsevier, vol. 54(C), pages 18-27.
    14. Bakhat, Mohcine & Rosselló, Jaume, 2011. "Estimation of tourism-induced electricity consumption: The case study of Balearics Islands, Spain," Energy Economics, Elsevier, vol. 33(3), pages 437-444, May.
    15. Iniyan, S. & Suganthi, L. & Samuel, Anand A., 2006. "Energy models for commercial energy prediction and substitution of renewable energy sources," Energy Policy, Elsevier, vol. 34(17), pages 2640-2653, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yusen Wang & Wenlong Liao & Yuqing Chang, 2018. "Gated Recurrent Unit Network-Based Short-Term Photovoltaic Forecasting," Energies, MDPI, vol. 11(8), pages 1-14, August.
    2. Jun-Mao Liao & Ming-Jui Chang & Luh-Maan Chang, 2020. "Prediction of Air-Conditioning Energy Consumption in R&D Building Using Multiple Machine Learning Techniques," Energies, MDPI, vol. 13(7), pages 1-22, April.
    3. Iwona Bąk & Małgorzata Tarczyńska-Łuniewska & Anna Barwińska-Małajowicz & Paweł Hydzik & Dariusz Kusz, 2022. "Is Energy Use in the EU Countries Moving toward Sustainable Development?," Energies, MDPI, vol. 15(16), pages 1-26, August.
    4. Zhenhua Li & Xingxin Chen & Lin Wu & Abu-Siada Ahmed & Tao Wang & Yujie Zhang & Hongbin Li & Zhenxing Li & Yanchun Xu & Yue Tong, 2021. "Error Analysis of Air-Core Coil Current Transformer Based on Stacking Model Fusion," Energies, MDPI, vol. 14(7), pages 1-14, March.
    5. Hongze Li & Hongyu Liu & Hongyan Ji & Shiying Zhang & Pengfei Li, 2020. "Ultra-Short-Term Load Demand Forecast Model Framework Based on Deep Learning," Energies, MDPI, vol. 13(18), pages 1-16, September.
    6. Pruethsan Sutthichaimethee & Danupon Ariyasajjakorn, 2018. "Relationships between Causal Factors Affecting Future Carbon Dioxide Output from Thailand’s Transportation Sector under the Government’s Sustainability Policy: Expanding the SEM-VECM Model," Resources, MDPI, vol. 7(4), pages 1-18, December.
    7. Pruethsan Sutthichaimethee & Boonton Dockthaisong, 2018. "A Relationship of Causal Factors in the Economic, Social, and Environmental Aspects Affecting the Implementation of Sustainability Policy in Thailand: Enriching the Path Analysis Based on a GMM Model," Resources, MDPI, vol. 7(4), pages 1-26, December.
    8. Athanasios Anagnostis & Elpiniki Papageorgiou & Dionysis Bochtis, 2020. "Application of Artificial Neural Networks for Natural Gas Consumption Forecasting," Sustainability, MDPI, vol. 12(16), pages 1-29, August.
    9. E, Jianwei & Ye, Jimin & He, Lulu & Jin, Haihong, 2019. "Energy price prediction based on independent component analysis and gated recurrent unit neural network," Energy, Elsevier, vol. 189(C).
    10. Yan, Wan-Lin, 2023. "Stock index futures price prediction using feature selection and deep learning," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
    11. Muhammad Ishfaque & Qianwei Dai & Nuhman ul Haq & Khanzaib Jadoon & Syed Muzyan Shahzad & Hammad Tariq Janjuhah, 2022. "Use of Recurrent Neural Network with Long Short-Term Memory for Seepage Prediction at Tarbela Dam, KP, Pakistan," Energies, MDPI, vol. 15(9), pages 1-16, April.
    12. Wang, Jun & Cao, Junxing & Yuan, Shan & Cheng, Ming, 2021. "Short-term forecasting of natural gas prices by using a novel hybrid method based on a combination of the CEEMDAN-SE-and the PSO-ALS-optimized GRU network," Energy, Elsevier, vol. 233(C).
    13. Bismark Ameyaw & Li Yao, 2018. "Sectoral Energy Demand Forecasting under an Assumption-Free Data-Driven Technique," Sustainability, MDPI, vol. 10(7), pages 1-20, July.
    14. Prado, Francisco & Minutolo, Marcel C. & Kristjanpoller, Werner, 2020. "Forecasting based on an ensemble Autoregressive Moving Average - Adaptive neuro - Fuzzy inference system – Neural network - Genetic Algorithm Framework," Energy, Elsevier, vol. 197(C).
    15. Wenting Zhao & Juanjuan Zhao & Xilong Yao & Zhixin Jin & Pan Wang, 2019. "A Novel Adaptive Intelligent Ensemble Model for Forecasting Primary Energy Demand," Energies, MDPI, vol. 12(7), pages 1-28, April.
    16. Qingwen Li & Guangxi Yan & Chengming Yu, 2022. "A Novel Multi-Factor Three-Step Feature Selection and Deep Learning Framework for Regional GDP Prediction: Evidence from China," Sustainability, MDPI, vol. 14(8), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    2. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    3. Reza Hafezi & Amir Naser Akhavan & Mazdak Zamani & Saeed Pakseresht & Shahaboddin Shamshirband, 2019. "Developing a Data Mining Based Model to Extract Predictor Factors in Energy Systems: Application of Global Natural Gas Demand," Energies, MDPI, vol. 12(21), pages 1-22, October.
    4. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    5. Shao, Zhen & Gao, Fei & Zhang, Qiang & Yang, Shan-Lin, 2015. "Multivariate statistical and similarity measure based semiparametric modeling of the probability distribution: A novel approach to the case study of mid-long term electricity consumption forecasting i," Applied Energy, Elsevier, vol. 156(C), pages 502-518.
    6. Wang, Qiang & Li, Shuyu & Li, Rongrong, 2018. "Forecasting energy demand in China and India: Using single-linear, hybrid-linear, and non-linear time series forecast techniques," Energy, Elsevier, vol. 161(C), pages 821-831.
    7. Deb, Chirag & Zhang, Fan & Yang, Junjing & Lee, Siew Eang & Shah, Kwok Wei, 2017. "A review on time series forecasting techniques for building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 902-924.
    8. Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
    9. Uzlu, Ergun & Akpınar, Adem & Özturk, Hasan Tahsin & Nacar, Sinan & Kankal, Murat, 2014. "Estimates of hydroelectric generation using neural networks with the artificial bee colony algorithm for Turkey," Energy, Elsevier, vol. 69(C), pages 638-647.
    10. Jeong, Kwangbok & Koo, Choongwan & Hong, Taehoon, 2014. "An estimation model for determining the annual energy cost budget in educational facilities using SARIMA (seasonal autoregressive integrated moving average) and ANN (artificial neural network)," Energy, Elsevier, vol. 71(C), pages 71-79.
    11. Kankal, Murat & AkpInar, Adem & Kömürcü, Murat Ihsan & Özsahin, Talat Sükrü, 2011. "Modeling and forecasting of Turkey's energy consumption using socio-economic and demographic variables," Applied Energy, Elsevier, vol. 88(5), pages 1927-1939, May.
    12. Uzlu, Ergun & Kankal, Murat & Akpınar, Adem & Dede, Tayfun, 2014. "Estimates of energy consumption in Turkey using neural networks with the teaching–learning-based optimization algorithm," Energy, Elsevier, vol. 75(C), pages 295-303.
    13. Wu, Zhibin & Xu, Jiuping, 2013. "Predicting and optimization of energy consumption using system dynamics-fuzzy multiple objective programming in world heritage areas," Energy, Elsevier, vol. 49(C), pages 19-31.
    14. Venkatraj, V. & Dixit, M.K., 2022. "Challenges in implementing data-driven approaches for building life cycle energy assessment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    15. Abdulkerim Karaaslan & Mesliha Gezen, 2017. "Forecasting of Turkey s Sectoral Energy Demand by Using Fuzzy Grey Regression Model," International Journal of Energy Economics and Policy, Econjournals, vol. 7(1), pages 67-77.
    16. Muhammad Muhitur Rahman & Syed Masiur Rahman & Md Shafiullah & Md Arif Hasan & Uneb Gazder & Abdullah Al Mamun & Umer Mansoor & Mohammad Tamim Kashifi & Omer Reshi & Md Arifuzzaman & Md Kamrul Islam &, 2022. "Energy Demand of the Road Transport Sector of Saudi Arabia—Application of a Causality-Based Machine Learning Model to Ensure Sustainable Environment," Sustainability, MDPI, vol. 14(23), pages 1-21, December.
    17. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    18. Yuan, Chaoqing & Liu, Sifeng & Fang, Zhigeng, 2016. "Comparison of China's primary energy consumption forecasting by using ARIMA (the autoregressive integrated moving average) model and GM(1,1) model," Energy, Elsevier, vol. 100(C), pages 384-390.
    19. Jasiński, Tomasz, 2019. "Modeling electricity consumption using nighttime light images and artificial neural networks," Energy, Elsevier, vol. 179(C), pages 831-842.
    20. Jiang, Lai & Yao, Runming & Liu, Kecheng & McCrindle, Rachel, 2017. "An Epistemic-Deontic-Axiologic (EDA) agent-based energy management system in office buildings," Applied Energy, Elsevier, vol. 205(C), pages 440-452.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1453-:d:112757. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.