Author
Listed:
- Md Abdul Aziz
(Department of Information and Communication Engineering, Sejong University, Seoul 05006, Republic of Korea
Department of Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic of Korea)
- Md Habibur Rahman
(Department of Information and Communication Engineering, Sejong University, Seoul 05006, Republic of Korea
Department of Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic of Korea)
- Rana Tabassum
(Department of Information and Communication Engineering, Sejong University, Seoul 05006, Republic of Korea
Department of Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic of Korea)
- Mohammad Abrar Shakil Sejan
(Department of Electrical Engineering, Sejong University, Seoul 05006, Republic of Korea)
- Myung-Sun Baek
(Department of Electrical Engineering, Sejong University, Seoul 05006, Republic of Korea)
- Hyoung-Kyu Song
(Department of Information and Communication Engineering, Sejong University, Seoul 05006, Republic of Korea
Department of Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic of Korea)
AbstractIn a multi-carrier (MC) system, the transmitted data are split across several sub-carriers as a crucial approach for achieving high data rates, reliability, and spectral efficiency. Deep learning (DL) enhances MC systems by improving signal representation, leading to more efficient data transmission and reduced bit error rates. In this paper, we propose an MC system supported by DL for operation on fading channels. Deep neural networks are utilized to model the modulation block, while a gated recurrent unit (GRU) network is used to model the demodulation blocks, acting as the encoder and decoder within an autoencoder (AE) architecture. The proposed scheme, known as MC-AE, differs from existing AE-based systems by directly processing channel state information and the received signal in a fully data-driven way, unlike traditional methods that rely on channel equalizers. This approach enables MC-AE to improve diversity and coding gains in fading channels by simultaneously optimizing the encoder and decoder. In this experiment, we evaluated the performance of the proposed model under both perfect and imperfect channel conditions and compared it with other models. Additionally, we assessed the performance of the MC-AE system against index modulation-based MC systems. The results demonstrate that the GRU-based MC-AE system outperforms the others.
Suggested Citation
Md Abdul Aziz & Md Habibur Rahman & Rana Tabassum & Mohammad Abrar Shakil Sejan & Myung-Sun Baek & Hyoung-Kyu Song, 2024.
"Deep Learning-Enhanced Autoencoder for Multi-Carrier Wireless Systems,"
Mathematics, MDPI, vol. 12(23), pages 1-19, November.
Handle:
RePEc:gam:jmathe:v:12:y:2024:i:23:p:3685-:d:1528351
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:23:p:3685-:d:1528351. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.