[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v31y1997i1p41-54.html
   My bibliography  Save this article

Work travel mode choice and number of non-work commute stops

Author

Listed:
  • Bhat, Chandra R.
Abstract
The research presented here develops a joint model of work travel mode choice and number of stops during the work commute. This model provides an improved basis for evaluating the effect of alternative policy actions to alleviate peak-period congestion. The model also contributes to activity-based research by allowing a more realistic behavioral representation of the simultaneous disaggregate choice process underlying mode choice to work and choice of number of activity stops. Mode choice is modeled by using a multinomial logit model and the number of stops is modeled by using an ordered-response formulation. The joint model is applied to an empirical analysis using data from an activity survey conducted in the Boston Metropolitan area. The results underscore the importance of accommodating the inter-relationship between mode choice to work and number of activity stops in the work commute. The effects of a variety of congestion-alleviation measures are examined using the model.

Suggested Citation

  • Bhat, Chandra R., 1997. "Work travel mode choice and number of non-work commute stops," Transportation Research Part B: Methodological, Elsevier, vol. 31(1), pages 41-54, February.
  • Handle: RePEc:eee:transb:v:31:y:1997:i:1:p:41-54
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(96)00016-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adler, Thomas & Ben-Akiva, Moshe, 1979. "A theoretical and empirical model of trip chaining behavior," Transportation Research Part B: Methodological, Elsevier, vol. 13(3), pages 243-257, September.
    2. E I Pas, 1984. "The Effect of Selected Sociodemographic Characteristics on Daily Travel-Activity Behavior," Environment and Planning A, , vol. 16(5), pages 571-581, May.
    3. Mohammad M. Hamed & Fred L. Mannering, 1993. "Modeling Travelers' Postwork Activity Involvement: Toward a New Methodology," Transportation Science, INFORMS, vol. 27(4), pages 381-394, November.
    4. Lee, Lung-Fei, 1983. "Generalized Econometric Models with Selectivity," Econometrica, Econometric Society, vol. 51(2), pages 507-512, March.
    5. Horowitz, Joel, 1980. "A utility maximizing model of the demand for multi-destination non-work travel," Transportation Research Part B: Methodological, Elsevier, vol. 14(4), pages 369-386, December.
    6. Kitamura, Ryuichi, 1984. "Incorporating trip chaining into analysis of destination choice," Transportation Research Part B: Methodological, Elsevier, vol. 18(1), pages 67-81, February.
    7. Manski, Charles F & Lerman, Steven R, 1977. "The Estimation of Choice Probabilities from Choice Based Samples," Econometrica, Econometric Society, vol. 45(8), pages 1977-1988, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bowman, J. L. & Ben-Akiva, M. E., 2001. "Activity-based disaggregate travel demand model system with activity schedules," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(1), pages 1-28, January.
    2. Brooks, Charles M. & Kaufmann, Patrick J. & Lichtenstein, Donald R., 2008. "Trip chaining behavior in multi-destination shopping trips: A field experiment and laboratory replication," Journal of Retailing, Elsevier, vol. 84(1), pages 29-38.
    3. Chen, Quizi, 2001. "An Exploration of Activity Scheduling and Rescheduling Processes," University of California Transportation Center, Working Papers qt9kb4q6vt, University of California Transportation Center.
    4. Garling, Tommy & Kwan, Mei-Po & Golledge, Reginald G., 1991. "Computational-Process Modelling of Travel Decisions: Review and Conceptual Analysis," University of California Transportation Center, Working Papers qt6mk0h2s2, University of California Transportation Center.
    5. Michael Duncan, 2016. "How much can trip chaining reduce VMT? A simplified method," Transportation, Springer, vol. 43(4), pages 643-659, July.
    6. Chandra Bhat, 2001. "Modeling the Commute Activity-Travel Pattern of Workers: Formulation and Empirical Analysis," Transportation Science, INFORMS, vol. 35(1), pages 61-79, February.
    7. John Gunnar Carlsson & Mehdi Behroozi & Raghuveer Devulapalli & Xiangfei Meng, 2016. "Household-Level Economies of Scale in Transportation," Operations Research, INFORMS, vol. 64(6), pages 1372-1387, December.
    8. Ming Lee & Michael McNally, 2006. "An empirical investigation on the dynamic processes of activity scheduling and trip chaining," Transportation, Springer, vol. 33(6), pages 553-565, November.
    9. Xie, Chi & Wang, Tong-Gen & Pu, Xiaoting & Karoonsoontawong, Ampol, 2017. "Path-constrained traffic assignment: Modeling and computing network impacts of stochastic range anxiety," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 136-157.
    10. Bhat, Chandra R., 1996. "A generalized multiple durations proportional hazard model with an application to activity behavior during the evening work-to-home commute," Transportation Research Part B: Methodological, Elsevier, vol. 30(6), pages 465-480, December.
    11. Wang, Rui, 2015. "The stops made by commuters: evidence from the 2009 US National Household Travel Survey," Journal of Transport Geography, Elsevier, vol. 47(C), pages 109-118.
    12. Xiao Fu & William Lam, 2014. "A network equilibrium approach for modelling activity-travel pattern scheduling problems in multi-modal transit networks with uncertainty," Transportation, Springer, vol. 41(1), pages 37-55, January.
    13. Bhat, Chandra R. & Mondal, Aupal, 2022. "A New Flexible Generalized Heterogeneous Data Model (GHDM) with an Application to Examine the Effect of High Density Neighborhood Living on Bicycling Frequency," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 244-266.
    14. Heckman, James J. & Lalonde, Robert J. & Smith, Jeffrey A., 1999. "The economics and econometrics of active labor market programs," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 31, pages 1865-2097, Elsevier.
    15. Joh, Chang-Hyeon & Arentze, Theo & Hofman, Frank & Timmermans, Harry, 2002. "Activity pattern similarity: a multidimensional sequence alignment method," Transportation Research Part B: Methodological, Elsevier, vol. 36(5), pages 385-403, June.
    16. Ram Pendyala & Chandra Bhat, 2004. "An Exploration of the Relationship between Timing and Duration of Maintenance Activities," Transportation, Springer, vol. 31(4), pages 429-456, November.
    17. Golledge, Reginald G. & Kwan, Mei-Po & Garling, Tommy, 1991. "Computational-Process Modelling of Travel Decisions: Empirical Tests," University of California Transportation Center, Working Papers qt97j2x1bk, University of California Transportation Center.
    18. Lee, Ming S. & McNally, Michael G., 2003. "On the structure of weekly activity/travel patterns," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(10), pages 823-839, December.
    19. Kevin Krizek, 2003. "Neighborhood services, trip purpose, and tour-based travel," Transportation, Springer, vol. 30(4), pages 387-410, November.
    20. Lee, Ming S. & Chung, Jin-Hyuk & McNally, Michael G., 2002. "An Empirical Investigation of the Underlying Behavioral Processes of Trip Chaining," University of California Transportation Center, Working Papers qt2gt6s9s9, University of California Transportation Center.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:31:y:1997:i:1:p:41-54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.