[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v165y2022icp1-14.html
   My bibliography  Save this article

Hybrid modeling of lane changes near freeway diverges

Author

Listed:
  • Zhou, Hao
  • Toth, Christopher
  • Guensler, Randall
  • Laval, Jorge
Abstract
This paper proposes a discrete/continuum hybrid framework for modeling the effects of lane-changing (LC) activity near freeway diverges in an effort to explain puzzling empirical observations of congestion waves not captured by current models for discretionary lane changes (DLCs). We show that this discrepancy is explained by the disruption of mandatory lane changes (MLCs), which come to a complete stop while waiting for a gap in the target lane. This disruption causes a backup upstream of the MLC and a void downstream responsible for reducing capacity. Our contribution is the formulation of two stochastic processes to capture these effects in the context of a hybrid framework combining the kinematic wave theory and moving bottlenecks treated as discrete particles. We find that the proposed method successfully replicates empirical observations, especially when it comes to the formation and propagation of stop-and-go waves. We also show that traditional continuum methods for treating lane changing are unable to capture observations. In all, our finding indicates that a key element to replicate traffic instabilities observed near freeway exits is the disruptive nature of both MLCs and DLCs. When this extreme disruption takes place, the system becomes chaotic and congestion spreads throughout the network quickly. The proposed hybrid approach requires only two additional parameters, and research is ongoing to determine if these parameters are transferable to other locations.

Suggested Citation

  • Zhou, Hao & Toth, Christopher & Guensler, Randall & Laval, Jorge, 2022. "Hybrid modeling of lane changes near freeway diverges," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 1-14.
  • Handle: RePEc:eee:transb:v:165:y:2022:i:c:p:1-14
    DOI: 10.1016/j.trb.2022.09.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S019126152200145X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2022.09.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gipps, P.G., 1986. "Multsim: a model for simulating vehicular traffic on multi-lane arterial roads," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 28(4), pages 291-295.
    2. Munoz, Juan Carlos & Daganzo, Carlos, 2000. "Experimental Characterization of Multi-Lane Freeway Traffic Upstream of an Off-Ramp Bottleneck," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8635j1df, Institute of Transportation Studies, UC Berkeley.
    3. Paul I. Richards, 1956. "Shock Waves on the Highway," Operations Research, INFORMS, vol. 4(1), pages 42-51, February.
    4. Papageorgiou, Markos & Blosseville, Jean-Marc & Hadj-Salem, Habib, 1989. "Macroscopic modelling of traffic flow on the Boulevard Périphérique in Paris," Transportation Research Part B: Methodological, Elsevier, vol. 23(1), pages 29-47, February.
    5. Jin, Wen-Long, 2010. "A kinematic wave theory of lane-changing traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1001-1021, September.
    6. Laval, Jorge A. & Leclercq, Ludovic, 2008. "Microscopic modeling of the relaxation phenomenon using a macroscopic lane-changing model," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 511-522, July.
    7. Kita, Hideyuki, 1999. "A merging-giveway interaction model of cars in a merging section: a game theoretic analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(3-4), pages 305-312, April.
    8. Daganzo, Carlos F. & Lin, Wei-Hua & Del Castillo, Jose M., 1997. "A simple physical principle for the simulation of freeways with special lanes and priority vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 31(2), pages 103-125, April.
    9. Jin, Wen-Long, 2013. "A multi-commodity Lighthill–Whitham–Richards model of lane-changing traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 361-377.
    10. Benjamin Schäfer & Christian Beck & Kazuyuki Aihara & Dirk Witthaut & Marc Timme, 2018. "Non-Gaussian power grid frequency fluctuations characterized by Lévy-stable laws and superstatistics," Nature Energy, Nature, vol. 3(2), pages 119-126, February.
    11. Zheng, Zuduo, 2014. "Recent developments and research needs in modeling lane changing," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 16-32.
    12. Daganzo, Carlos F., 1994. "The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory," Transportation Research Part B: Methodological, Elsevier, vol. 28(4), pages 269-287, August.
    13. Laval, Jorge A. & Daganzo, Carlos F., 2006. "Lane-changing in traffic streams," Transportation Research Part B: Methodological, Elsevier, vol. 40(3), pages 251-264, March.
    14. Sumalee, A. & Zhong, R.X. & Pan, T.L. & Szeto, W.Y., 2011. "Stochastic cell transmission model (SCTM): A stochastic dynamic traffic model for traffic state surveillance and assignment," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 507-533, March.
    15. Brilon, Werner & Koenig, Ralph & Troutbeck, Rod J., 1999. "Useful estimation procedures for critical gaps," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(3-4), pages 161-186, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Min Zhang & Yuhan Nie & Chi Zhang & Bo Wang & Shengyu Xi, 2024. "Analysis of the Duration of Mandatory Lane Changes for Heavy-Duty Trucks at Interchanges," Sustainability, MDPI, vol. 16(14), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Zuduo, 2014. "Recent developments and research needs in modeling lane changing," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 16-32.
    2. Mohammadian, Saeed & Zheng, Zuduo & Haque, Md. Mazharul & Bhaskar, Ashish, 2021. "Performance of continuum models for realworld traffic flows: Comprehensive benchmarking," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 132-167.
    3. Oh, Simon & Yeo, Hwasoo, 2015. "Impact of stop-and-go waves and lane changes on discharge rate in recovery flow," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 88-102.
    4. Jin, Wen-Long, 2013. "A multi-commodity Lighthill–Whitham–Richards model of lane-changing traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 361-377.
    5. Gong, Siyuan & Du, Lili, 2016. "Optimal location of advance warning for mandatory lane change near a two-lane highway off-ramp," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 1-30.
    6. Yibing Wang & Long Wang & Xianghua Yu & Jingqiu Guo, 2023. "Capacity Drop at Freeway Ramp Merges with Its Replication in Macroscopic and Microscopic Traffic Simulations: A Tutorial Report," Sustainability, MDPI, vol. 15(3), pages 1-27, January.
    7. Kontorinaki, Maria & Spiliopoulou, Anastasia & Roncoli, Claudio & Papageorgiou, Markos, 2017. "First-order traffic flow models incorporating capacity drop: Overview and real-data validation," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 52-75.
    8. He, Jia & He, Zhengbing & Fan, Bo & Chen, Yanyan, 2020. "Optimal location of lane-changing warning point in a two-lane road considering different traffic flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    9. Chen, Danjue & Ahn, Soyoung, 2018. "Capacity-drop at extended bottlenecks: Merge, diverge, and weave," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 1-20.
    10. Blandin, Sébastien & Argote, Juan & Bayen, Alexandre M. & Work, Daniel B., 2013. "Phase transition model of non-stationary traffic flow: Definition, properties and solution method," Transportation Research Part B: Methodological, Elsevier, vol. 52(C), pages 31-55.
    11. Yeo, Hwasoo, 2008. "Asymmetric Microscopic Driving Behavior Theory," University of California Transportation Center, Working Papers qt1tn1m968, University of California Transportation Center.
    12. Khelfa, Basma & Ba, Ibrahima & Tordeux, Antoine, 2023. "Predicting highway lane-changing maneuvers: A benchmark analysis of machine and ensemble learning algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
    13. Ngoduy, D., 2021. "Noise-induced instability of a class of stochastic higher order continuum traffic models," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 260-278.
    14. Mehr, Negar & Li, Ruolin & Horowitz, Roberto, 2021. "A game theoretic macroscopic model of lane choices at traffic diverges with applications to mixed–autonomy networks," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 45-59.
    15. Ge, Qian & Fukuda, Daisuke, 2019. "A macroscopic dynamic network loading model for multiple-reservoir system," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 502-527.
    16. Storm, Pieter Jacob & Mandjes, Michel & van Arem, Bart, 2022. "Efficient evaluation of stochastic traffic flow models using Gaussian process approximation," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 126-144.
    17. Malachy Carey & Chandra Balijepalli & David Watling, 2015. "Extending the Cell Transmission Model to Multiple Lanes and Lane-Changing," Networks and Spatial Economics, Springer, vol. 15(3), pages 507-535, September.
    18. Li, Zhengming & Smirnova, M.N. & Zhang, Yongliang & Smirnov, N.N. & Zhu, Zuojin, 2022. "Tunnel speed limit effects on traffic flow explored with a three lane model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 185-197.
    19. Bai, Lu & Wong, S.C. & Xu, Pengpeng & Chow, Andy H.F. & Lam, William H.K., 2021. "Calibration of stochastic link-based fundamental diagram with explicit consideration of speed heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 524-539.
    20. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:165:y:2022:i:c:p:1-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.