[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v71y2015icp248-260.html
   My bibliography  Save this article

Link-based day-to-day network traffic dynamics and equilibria

Author

Listed:
  • Guo, Ren-Yong
  • Yang, Hai
  • Huang, Hai-Jun
  • Tan, Zhijia
Abstract
A general dynamical system model with link-based variables is formulated to characterize the processes of achieving equilibria from a non-equilibrium state in traffic networks. Several desirable properties of the dynamical system model are established, including the equivalence between its stationary state and user equilibrium, the invariance of its evolutionary trajectories, and the uniqueness and stability of its stationary points. Moreover, it is shown that not only a link-based version of two existing day-to-day traffic dynamics models but also two existing link-based dynamical system models of traffic flow are the special cases of the proposed model. The stabilities of stationary states of these special cases are also analyzed and discussed. In addition, an extension is made to the case with elastic demand. The study is helpful for better understanding the day-to-day adjustment mechanism of traffic flows in networks.

Suggested Citation

  • Guo, Ren-Yong & Yang, Hai & Huang, Hai-Jun & Tan, Zhijia, 2015. "Link-based day-to-day network traffic dynamics and equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 248-260.
  • Handle: RePEc:eee:transb:v:71:y:2015:i:c:p:248-260
    DOI: 10.1016/j.trb.2014.11.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261514001945
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2014.11.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Hai-Jun & Lam, William H. K., 2002. "Modeling and solving the dynamic user equilibrium route and departure time choice problem in network with queues," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 253-273, March.
    2. Parry, Katharina & Hazelton, Martin L., 2013. "Bayesian inference for day-to-day dynamic traffic models," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 104-115.
    3. William H. Sandholm, 2002. "Evolutionary Implementation and Congestion Pricing," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(3), pages 667-689.
    4. Jin, Wen-Long, 2007. "A dynamical system model of the traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 32-48, January.
    5. Stella Dafermos, 1980. "Traffic Equilibrium and Variational Inequalities," Transportation Science, INFORMS, vol. 14(1), pages 42-54, February.
    6. Nakayama, Shoichiro & Watling, David, 2014. "Consistent formulation of network equilibrium with stochastic flows," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 50-69.
    7. Smith, M. J., 1979. "The existence, uniqueness and stability of traffic equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 13(4), pages 295-304, December.
    8. Zhang, Ding & Nagurney, Anna & Wu, Jiahao, 2001. "On the equivalence between stationary link flow patterns and traffic network equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 35(8), pages 731-748, September.
    9. Yang, Fan & Zhang, Ding, 2009. "Day-to-day stationary link flow pattern," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 119-126, January.
    10. Mounce, Richard, 2006. "Convergence in a continuous dynamic queueing model for traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 779-791, November.
    11. Smith, Mike & Mounce, Richard, 2011. "A splitting rate model of traffic re-routeing and traffic control," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1389-1409.
    12. Smith, M. J., 1983. "The existence and calculation of traffic equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 17(4), pages 291-303, August.
    13. Guo, Ren-Yong & Huang, Hai-Jun, 2009. "Chaos and bifurcation in dynamical evolution process of traffic assignment with flow “mutation”," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1150-1157.
    14. Watling, David, 1999. "Stability of the stochastic equilibrium assignment problem: a dynamical systems approach," Transportation Research Part B: Methodological, Elsevier, vol. 33(4), pages 281-312, May.
    15. Michael J. Smith, 1984. "The Stability of a Dynamic Model of Traffic Assignment---An Application of a Method of Lyapunov," Transportation Science, INFORMS, vol. 18(3), pages 245-252, August.
    16. D. Zhang & A. Nagurney, 1997. "Formulation, Stability, and Computation of Traffic Network Equilibria as Projected Dynamical Systems," Journal of Optimization Theory and Applications, Springer, vol. 93(2), pages 417-444, May.
    17. Ye, Hongbo & Yang, Hai, 2013. "Continuous price and flow dynamics of tradable mobility credits," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 436-450.
    18. Guo, Xiaolei & Yang, Hai, 2009. "User heterogeneity and bi-criteria system optimum," Transportation Research Part B: Methodological, Elsevier, vol. 43(4), pages 379-390, May.
    19. Anna Nagurney & Ding Zhang, 1997. "Projected Dynamical Systems in the Formulation, Stability Analysis, and Computation of Fixed-Demand Traffic Network Equilibria," Transportation Science, INFORMS, vol. 31(2), pages 147-158, May.
    20. Mounce, Richard & Carey, Malachy, 2011. "Route swapping in dynamic traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 102-111, January.
    21. Guo, Xiaolei, 2013. "Toll sequence operation to realize target flow pattern under bounded rationality," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 203-216.
    22. Sandholm, William H., 2001. "Potential Games with Continuous Player Sets," Journal of Economic Theory, Elsevier, vol. 97(1), pages 81-108, March.
    23. Zhang, Ding & Nagurney, Anna, 1996. "On the local and global stability of a travel route choice adjustment process," Transportation Research Part B: Methodological, Elsevier, vol. 30(4), pages 245-262, August.
    24. Bie, Jing & Lo, Hong K., 2010. "Stability and attraction domains of traffic equilibria in a day-to-day dynamical system formulation," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 90-107, January.
    25. Hazelton, Martin L., 2002. "Day-to-day variation in Markovian traffic assignment models," Transportation Research Part B: Methodological, Elsevier, vol. 36(7), pages 637-648, August.
    26. Guo, Xiaolei & Liu, Henry X., 2011. "Bounded rationality and irreversible network change," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1606-1618.
    27. He, Xiaozheng & Guo, Xiaolei & Liu, Henry X., 2010. "A link-based day-to-day traffic assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 597-608, May.
    28. Wang, Xiaolei & Yang, Hai & Zhu, Daoli & Li, Changmin, 2012. "Tradable travel credits for congestion management with heterogeneous users," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 426-437.
    29. G. E. Cantarella & E. Cascetta, 1995. "Dynamic Processes and Equilibrium in Transportation Networks: Towards a Unifying Theory," Transportation Science, INFORMS, vol. 29(4), pages 305-329, November.
    30. Yang, Hai & Huang, Hai-Jun, 2004. "The multi-class, multi-criteria traffic network equilibrium and systems optimum problem," Transportation Research Part B: Methodological, Elsevier, vol. 38(1), pages 1-15, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren-Yong Guo & Hai Yang & Hai-Jun Huang & Zhijia Tan, 2016. "Day-to-Day Flow Dynamics and Congestion Control," Transportation Science, INFORMS, vol. 50(3), pages 982-997, August.
    2. Han, Linghui & Wang, David Z.W. & Lo, Hong K. & Zhu, Chengjuan & Cai, Xingju, 2017. "Discrete-time day-to-day dynamic congestion pricing scheme considering multiple equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 1-16.
    3. Ren-Yong Guo & Hai-Jun Huang & Hai Yang, 2019. "Tradable Credit Scheme for Control of Evolutionary Traffic Flows to System Optimum: Model and its Convergence," Networks and Spatial Economics, Springer, vol. 19(3), pages 833-868, September.
    4. Peeta, Srinivas, 2016. "A marginal utility day-to-day traffic evolution model based on one-step strategic thinkingAuthor-Name: He, Xiaozheng," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 237-255.
    5. Lie Han, 2022. "Proportional-Switch Adjustment Process with Elastic Demand and Congestion Toll in the Absence of Demand Functions," Networks and Spatial Economics, Springer, vol. 22(4), pages 709-735, December.
    6. Wen-yi Zhang & Wei Guan & Ji-hui Ma & Jun-fang Tian, 2015. "A Nonlinear Pairwise Swapping Dynamics to Model the Selfish Rerouting Evolutionary Game," Networks and Spatial Economics, Springer, vol. 15(4), pages 1075-1092, December.
    7. Wei Nai & Zan Yang & Dan Li & Lu Liu & Yuting Fu & Yuao Guo, 2024. "Urban Day-to-Day Travel and Its Development in an Information Environment: A Review," Sustainability, MDPI, vol. 16(6), pages 1-29, March.
    8. Ye, Hongbo & Xiao, Feng & Yang, Hai, 2021. "Day-to-day dynamics with advanced traveler information," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 23-44.
    9. Kumar, Amit & Peeta, Srinivas, 2015. "A day-to-day dynamical model for the evolution of path flows under disequilibrium of traffic networks with fixed demand," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 235-256.
    10. Liu, Peng & Liao, Feixiong & Tian, Qiong & Huang, Hai-Jun & Timmermans, Harry, 2020. "Day-to-day needs-based activity-travel dynamics and equilibria in multi-state supernetworks," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 208-227.
    11. Hongbo Ye & Hai Yang, 2017. "Rational Behavior Adjustment Process with Boundedly Rational User Equilibrium," Transportation Science, INFORMS, vol. 51(3), pages 968-980, August.
    12. Xiaomei Zhao & Chunhua Wan & Jun Bi, 2019. "Day-to-Day Assignment Models and Traffic Dynamics Under Information Provision," Networks and Spatial Economics, Springer, vol. 19(2), pages 473-502, June.
    13. Ye, Hongbo & Yang, Hai, 2013. "Continuous price and flow dynamics of tradable mobility credits," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 436-450.
    14. Jiayang Li & Zhaoran Wang & Yu Marco Nie, 2023. "Wardrop Equilibrium Can Be Boundedly Rational: A New Behavioral Theory of Route Choice," Papers 2304.02500, arXiv.org, revised Feb 2024.
    15. He, Xiaozheng & Guo, Xiaolei & Liu, Henry X., 2010. "A link-based day-to-day traffic assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 597-608, May.
    16. Ren-Yong Guo & Hai Yang & Hai-Jun Huang, 2018. "Are We Really Solving the Dynamic Traffic Equilibrium Problem with a Departure Time Choice?," Transportation Science, INFORMS, vol. 52(3), pages 603-620, June.
    17. Liu, Ronghui & Smith, Mike, 2015. "Route choice and traffic signal control: A study of the stability and instability of a new dynamical model of route choice and traffic signal control," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 123-145.
    18. Liu, Wei & Geroliminis, Nikolas, 2017. "Doubly dynamics for multi-modal networks with park-and-ride and adaptive pricing," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 162-179.
    19. Feng Xiao & Minyu Shen & Zhengtian Xu & Ruijie Li & Hai Yang & Yafeng Yin, 2019. "Day-to-Day Flow Dynamics for Stochastic User Equilibrium and a General Lyapunov Function," Transportation Science, INFORMS, vol. 53(3), pages 683-694, May.
    20. Yang, Fan & Zhang, Ding, 2009. "Day-to-day stationary link flow pattern," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 119-126, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:71:y:2015:i:c:p:248-260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.