[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v42y2008i4p381-394.html
   My bibliography  Save this article

The estimation of generalized extreme value models from choice-based samples

Author

Listed:
  • Bierlaire, M.
  • Bolduc, D.
  • McFadden, D.
Abstract
In the presence of choice-based sampling strategies for data collection, the property of multinomial logit (MNL) models, that consistent estimates of all parameters but the constants can be obtained from an exogenous sample maximum likelihood (ESML) estimation, does not hold in general for generalized extreme value (GEV) models. We propose a consistent ESML estimator for GEV models in this context. We first identify a specific class of GEV models with the desired property that, similarly to MNL, the constants absorb the potential bias. We then propose a new and simple weighted conditional maximum likelihood (WCML) estimator for the more general case. Contrarily to the weighted exogenous sample maximum likelihood (WESML) estimator by Manski and Lerman [Manski, C., Lerman, S., 1977. The estimation of choice probabilities from choice-based samples. Econometrica 45, 1977-1988], the new WCML estimator does not require an external knowledge of the market shares. We show that this applies also to the case where alternatives are sampled from a large choice set, and we illustrate the use of the estimator on synthetic and real data.

Suggested Citation

  • Bierlaire, M. & Bolduc, D. & McFadden, D., 2008. "The estimation of generalized extreme value models from choice-based samples," Transportation Research Part B: Methodological, Elsevier, vol. 42(4), pages 381-394, May.
  • Handle: RePEc:eee:transb:v:42:y:2008:i:4:p:381-394
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(07)00096-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Imbens, Guido W, 1992. "An Efficient Method of Moments Estimator for Discrete Choice Models with Choice-Based Sampling," Econometrica, Econometric Society, vol. 60(5), pages 1187-1214, September.
    2. Monfort, Alain, 1992. "Exogenous and Endogenous Sampling," Econometric Theory, Cambridge University Press, vol. 8(03), pages 427-428, September.
    3. White, Halbert, 1987. "A Misspecified Model," Econometric Theory, Cambridge University Press, vol. 3(02), pages 306-306, April.
    4. Monfort, Alain, 1996. "A Reappraisal of Misspecified Econometric Models," Econometric Theory, Cambridge University Press, vol. 12(4), pages 597-619, October.
    5. Kenneth E. Train & Daniel L. McFadden & Moshe Ben-Akiva, 1987. "The Demand for Local Telephone Service: A Fully Discrete Model of Residential Calling Patterns and Service Choices," RAND Journal of Economics, The RAND Corporation, vol. 18(1), pages 109-123, Spring.
    6. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    7. Daly, Andrew & Bierlaire, Michel, 2006. "A general and operational representation of Generalised Extreme Value models," Transportation Research Part B: Methodological, Elsevier, vol. 40(4), pages 285-305, May.
    8. Morgenthaler, S. & Vardi, Y., 1986. "Choice-based samples : A non-parametric approach," Journal of Econometrics, Elsevier, vol. 32(1), pages 109-125, June.
    9. Manski, Charles F & Lerman, Steven R, 1977. "The Estimation of Choice Probabilities from Choice Based Samples," Econometrica, Econometric Society, vol. 45(8), pages 1977-1988, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guevara, C. Angelo & Ben-Akiva, Moshe E., 2013. "Sampling of alternatives in Multivariate Extreme Value (MEV) models," Transportation Research Part B: Methodological, Elsevier, vol. 48(C), pages 31-52.
    2. Lurkin, Virginie & Garrow, Laurie A. & Higgins, Matthew J. & Newman, Jeffrey P. & Schyns, Michael, 2017. "Accounting for price endogeneity in airline itinerary choice models: An application to Continental U.S. markets," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 228-246.
    3. Esmeralda Ramalho, 2004. "Covariate Measurement Error in Endogenous Stratified Samples," Economics Working Papers 2_2004, University of Évora, Department of Economics (Portugal).
    4. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    5. Lancaster, Tony & Imbens, Guido, 1996. "Case-control studies with contaminated controls," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 145-160.
    6. Daniel McFadden, 2001. "Economic Choices," American Economic Review, American Economic Association, vol. 91(3), pages 351-378, June.
    7. Lancaster, Tony & Imbens, Guido, 1995. "Optimal stock/flow panels," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 325-348.
    8. Tomz, Michael & King, Gary & Zeng, Langche, 2003. "ReLogit: Rare Events Logistic Regression," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 8(i02).
    9. Pereira, Pedro & Ribeiro, Tiago & Vareda, João, 2013. "Delineating markets for bundles with consumer level data: The case of triple-play," International Journal of Industrial Organization, Elsevier, vol. 31(6), pages 760-773.
    10. Prokhorov, Artem & Schmidt, Peter, 2009. "GMM redundancy results for general missing data problems," Journal of Econometrics, Elsevier, vol. 151(1), pages 47-55, July.
    11. Frejinger, E. & Bierlaire, M. & Ben-Akiva, M., 2009. "Sampling of alternatives for route choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 43(10), pages 984-994, December.
    12. Giulio Bottazzi & Marco Grazzi & Angelo Secchi & Federico Tamagni, 2011. "Financial and economic determinants of firm default," Journal of Evolutionary Economics, Springer, vol. 21(3), pages 373-406, August.
    13. repec:jss:jstsof:08:i02 is not listed on IDEAS
    14. Kyungchul Song, 2009. "Efficient Estimation of Average Treatment Effects under Treatment-Based Sampling," PIER Working Paper Archive 09-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    15. Christopher Vahl & Qing Kang, 2015. "Analysis of an outcome-dependent enriched sample: hypothesis tests," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(3), pages 387-409, September.
    16. Committee, Nobel Prize, 2000. "The Scientific Contributions of James Heckman and Daniel McFadden," Nobel Prize in Economics documents 2000-2, Nobel Prize Committee.
    17. Koichi Kuriyama & James Hilger & Michael Hanemann, 2013. "A Random Parameter Model with Onsite Sampling for Recreation Site Choice: An Application to Southern California Shoreline Sportfishing," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(4), pages 481-497, December.
    18. Imbens, Guido W. & Lancaster, Tony, 1996. "Efficient estimation and stratified sampling," Journal of Econometrics, Elsevier, vol. 74(2), pages 289-318, October.
    19. Salon, Deborah, 2009. "Neighborhoods, cars, and commuting in New York City: A discrete choice approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(2), pages 180-196, February.
    20. Gospodinov, Nikolay & Maasoumi, Esfandiar, 2021. "Generalized aggregation of misspecified models: With an application to asset pricing," Journal of Econometrics, Elsevier, vol. 222(1), pages 451-467.
    21. Brownstone, David & Golob, Thomas F. & Kazimi, Camilla, 1991. "Modeling non-ignorable attrition and measurement error in panel surveys: an application to travel demand modeling," University of California Transportation Center, Working Papers qt7sh4d67b, University of California Transportation Center.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:42:y:2008:i:4:p:381-394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.