[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v21y2013icp633-658.html
   My bibliography  Save this article

Performance and emission characteristics of biodiesel from different origins: A review

Author

Listed:
  • Kumar, Niraj
  • Varun,
  • Chauhan, Sant Ram
Abstract
Alarming situation of world energy stimulated the researchers to look for new sources of fuel, which must be renewable, locally available and environmentally benign. In this regard, the significance of biodiesel as technically and commercially viable alternative to fossil-diesel has led to intense research in the field. Biodiesel is made from different feedstock depending on the availability. This paper analyzes the performance and emission of biodiesel from different feedstock. The main advantage of biodiesel is that it potentially reduces the key pollutants, carbon monoxide, unburnt hydrocarbons and particulate matters. While several researchers have looked at the impact of biodiesel on these pollutants, only few publications discussed the effect of fatty acid composition on performance and emission characteristics. An attempt has been carried out to discuss the effect of biodiesel in terms of performance and emissions based upon composition and properties of the respective biodiesel. The results of the study show that different chemical compositions of biodiesel based upon their origin lead to variation in their properties and performance and emission characteristics. Biodiesel produced from saturated feedstock reduce NOx emission and resistive to oxidation but exhibit poor atomization. However, many further research needs to be carried out to understand the relationship between the type of biodiesel feedstock and performance and emission.

Suggested Citation

  • Kumar, Niraj & Varun, & Chauhan, Sant Ram, 2013. "Performance and emission characteristics of biodiesel from different origins: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 633-658.
  • Handle: RePEc:eee:rensus:v:21:y:2013:i:c:p:633-658
    DOI: 10.1016/j.rser.2013.01.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032113000300
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2013.01.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nwafor, O.M.I, 2004. "Emission characteristics of diesel engine operating on rapeseed methyl ester," Renewable Energy, Elsevier, vol. 29(1), pages 119-129.
    2. Chauhan, Bhupendra Singh & Kumar, Naveen & Cho, Haeng Muk, 2012. "A study on the performance and emission of a diesel engine fueled with Jatropha biodiesel oil and its blends," Energy, Elsevier, vol. 37(1), pages 616-622.
    3. Utlu, Zafer & Koçak, Mevlüt Süreyya, 2008. "The effect of biodiesel fuel obtained from waste frying oil on direct injection diesel engine performance and exhaust emissions," Renewable Energy, Elsevier, vol. 33(8), pages 1936-1941.
    4. Kaya, Canan & Hamamci, Candan & Baysal, Akin & Akba, Osman & Erdogan, Sait & Saydut, Abdurrahman, 2009. "Methyl ester of peanut (Arachis hypogea L.) seed oil as a potential feedstock for biodiesel production," Renewable Energy, Elsevier, vol. 34(5), pages 1257-1260.
    5. Anand, B. Prem & Saravanan, C.G. & Srinivasan, C. Ananda, 2010. "Performance and exhaust emission of turpentine oil powered direct injection diesel engine," Renewable Energy, Elsevier, vol. 35(6), pages 1179-1184.
    6. Senthil Kumar, M. & Kerihuel, A. & Bellettre, J. & Tazerout, M., 2005. "Experimental investigations on the use of preheated animal fat as fuel in a compression ignition engine," Renewable Energy, Elsevier, vol. 30(9), pages 1443-1456.
    7. Makareviciene, V & Janulis, P, 2003. "Environmental effect of rapeseed oil ethyl ester," Renewable Energy, Elsevier, vol. 28(15), pages 2395-2403.
    8. Hazar, Hanbey & Aydin, Hüseyin, 2010. "Performance and emission evaluation of a CI engine fueled with preheated raw rapeseed oil (RRO)-diesel blends," Applied Energy, Elsevier, vol. 87(3), pages 786-790, March.
    9. Shahid, Ejaz M. & Jamal, Younis, 2011. "Production of biodiesel: A technical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4732-4745.
    10. Ramadhas, A.S. & Muraleedharan, C. & Jayaraj, S., 2005. "Performance and emission evaluation of a diesel engine fueled with methyl esters of rubber seed oil," Renewable Energy, Elsevier, vol. 30(12), pages 1789-1800.
    11. Godiganur, Sharanappa & Suryanarayana Murthy, Ch. & Reddy, Rana Prathap, 2010. "Performance and emission characteristics of a Kirloskar HA394 diesel engine operated on fish oil methyl esters," Renewable Energy, Elsevier, vol. 35(2), pages 355-359.
    12. Ramadhas, A.S. & Jayaraj, S. & Muraleedharan, C., 2006. "Theoretical modeling and experimental studies on biodiesel-fueled engine," Renewable Energy, Elsevier, vol. 31(11), pages 1813-1826.
    13. Gopinath, A. & Puhan, Sukumar & Nagarajan, G., 2009. "Theoretical modeling of iodine value and saponification value of biodiesel fuels from their fatty acid composition," Renewable Energy, Elsevier, vol. 34(7), pages 1806-1811.
    14. Singh, Pranil J. & Khurma, Jagjit & Singh, Anirudh, 2010. "Preparation, characterisation, engine performance and emission characteristics of coconut oil based hybrid fuels," Renewable Energy, Elsevier, vol. 35(9), pages 2065-2070.
    15. Kalam, M.A & Husnawan, M & Masjuki, H.H, 2003. "Exhaust emission and combustion evaluation of coconut oil-powered indirect injection diesel engine," Renewable Energy, Elsevier, vol. 28(15), pages 2405-2415.
    16. Tsolakis, A. & Megaritis, A. & Wyszynski, M.L. & Theinnoi, K., 2007. "Engine performance and emissions of a diesel engine operating on diesel-RME (rapeseed methyl ester) blends with EGR (exhaust gas recirculation)," Energy, Elsevier, vol. 32(11), pages 2072-2080.
    17. Aydin, Hüseyin & Bayindir, Hasan, 2010. "Performance and emission analysis of cottonseed oil methyl ester in a diesel engine," Renewable Energy, Elsevier, vol. 35(3), pages 588-592.
    18. Tsai, Wen-Tien & Lin, Chih-Chung & Yeh, Ching-Wei, 2007. "An analysis of biodiesel fuel from waste edible oil in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 838-857, June.
    19. He, Y. & Bao, Y.D., 2005. "Study on cottonseed oil as a partial substitute for diesel oil in fuel for single-cylinder diesel engine," Renewable Energy, Elsevier, vol. 30(5), pages 805-813.
    20. Haik, Yousef & Selim, Mohamed Y.E. & Abdulrehman, Tahir, 2011. "Combustion of algae oil methyl ester in an indirect injection diesel engine," Energy, Elsevier, vol. 36(3), pages 1827-1835.
    21. Haldar, S.K. & Ghosh, B.B. & Nag, A., 2009. "Utilization of unattended Putranjiva roxburghii non-edible oil as fuel in diesel engine," Renewable Energy, Elsevier, vol. 34(1), pages 343-347.
    22. Ng, Jo-Han & Ng, Hoon Kiat & Gan, Suyin, 2012. "Characterisation of engine-out responses from a light-duty diesel engine fuelled with palm methyl ester (PME)," Applied Energy, Elsevier, vol. 90(1), pages 58-67.
    23. Kondili, E.M. & Kaldellis, J.K., 2007. "Biofuel implementation in East Europe: Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 2137-2151, December.
    24. Puhan, Sukumar & Vedaraman, N. & Sankaranarayanan, G. & Ram, Boppana V. Bharat, 2005. "Performance and emission study of Mahua oil (madhuca indica oil) ethyl ester in a 4-stroke natural aspirated direct injection diesel engine," Renewable Energy, Elsevier, vol. 30(8), pages 1269-1278.
    25. Marchetti, J.M. & Miguel, V.U. & Errazu, A.F., 2007. "Possible methods for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1300-1311, August.
    26. Baiju, B. & Naik, M.K. & Das, L.M., 2009. "A comparative evaluation of compression ignition engine characteristics using methyl and ethyl esters of Karanja oil," Renewable Energy, Elsevier, vol. 34(6), pages 1616-1621.
    27. Sharma, Y.C. & Singh, B., 2009. "Development of biodiesel: Current scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1646-1651, August.
    28. Najafi, Gholamhassan & Ghobadian, Barat & Yusaf, Talal F., 2011. "Algae as a sustainable energy source for biofuel production in Iran: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3870-3876.
    29. Kalam, M.A. & Masjuki, H.H. & Jayed, M.H. & Liaquat, A.M., 2011. "Emission and performance characteristics of an indirect ignition diesel engine fuelled with waste cooking oil," Energy, Elsevier, vol. 36(1), pages 397-402.
    30. Karaosmanoǧlu, F & Kurt, G & Özaktaş, T, 2000. "Long term CI engine test of sunflower oil," Renewable Energy, Elsevier, vol. 19(1), pages 219-221.
    31. Lin, Lin & Ying, Dong & Chaitep, Sumpun & Vittayapadung, Saritporn, 2009. "Biodiesel production from crude rice bran oil and properties as fuel," Applied Energy, Elsevier, vol. 86(5), pages 681-688, May.
    32. Alptekin, Ertan & Canakci, Mustafa, 2008. "Determination of the density and the viscosities of biodiesel–diesel fuel blends," Renewable Energy, Elsevier, vol. 33(12), pages 2623-2630.
    33. Zhu, Yixin & Xu, Jianchu & Mortimer, Peter E., 2011. "The influence of seed and oil storage on the acid levels of rubber seed oil, derived from Hevea brasiliensis grown in Xishuangbanna, China," Energy, Elsevier, vol. 36(8), pages 5403-5408.
    34. Koh, May Ying & Mohd. Ghazi, Tinia Idaty, 2011. "A review of biodiesel production from Jatropha curcas L. oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2240-2251, June.
    35. Gürü, Metin & Koca, Atilla & Can, Özer & Çınar, Can & Şahin, Fatih, 2010. "Biodiesel production from waste chicken fat based sources and evaluation with Mg based additive in a diesel engine," Renewable Energy, Elsevier, vol. 35(3), pages 637-643.
    36. Canoira, Laureano & García Galeán, Juan & Alcántara, Ramón & Lapuerta, Magín & García-Contreras, Reyes, 2010. "Fatty acid methyl esters (FAMEs) from castor oil: Production process assessment and synergistic effects in its properties," Renewable Energy, Elsevier, vol. 35(1), pages 208-217.
    37. Bomb, Christian & McCormick, Kes & Deurwaarder, Ewout & Kaberger, Tomas, 2007. "Biofuels for transport in Europe: Lessons from Germany and the UK," Energy Policy, Elsevier, vol. 35(4), pages 2256-2267, April.
    38. Vyas, D.K. & Singh, R.N., 2007. "Feasibility study of Jatropha seed husk as an open core gasifier feedstock," Renewable Energy, Elsevier, vol. 32(3), pages 512-517.
    39. Gumus, M., 2008. "Evaluation of hazelnut kernel oil of Turkish origin as alternative fuel in diesel engines," Renewable Energy, Elsevier, vol. 33(11), pages 2448-2457.
    40. Satyanarayana, M. & Muraleedharan, C., 2011. "A comparative study of vegetable oil methyl esters (biodiesels)," Energy, Elsevier, vol. 36(4), pages 2129-2137.
    41. Forson, F.K & Oduro, E.K & Hammond-Donkoh, E, 2004. "Performance of jatropha oil blends in a diesel engine," Renewable Energy, Elsevier, vol. 29(7), pages 1135-1145.
    42. Hammond, G.P. & Kallu, S. & McManus, M.C., 2008. "Development of biofuels for the UK automotive market," Applied Energy, Elsevier, vol. 85(6), pages 506-515, June.
    43. Labeckas, Gvidonas & Slavinskas, Stasys, 2006. "Performance of direct-injection off-road diesel engine on rapeseed oil," Renewable Energy, Elsevier, vol. 31(6), pages 849-863.
    44. Li, Shiwu & Wang, Yunpeng & Dong, Shengwu & Chen, Yang & Cao, Fenghua & Chai, Fang & Wang, Xiaohong, 2009. "Biodiesel production from Eruca Sativa Gars vegetable oil and motor, emissions properties," Renewable Energy, Elsevier, vol. 34(7), pages 1871-1876.
    45. Huang, Yun-Hsun & Wu, Jung-Hua, 2008. "Analysis of biodiesel promotion in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 1176-1186, May.
    46. Ghobadian, B. & Rahimi, H. & Nikbakht, A.M. & Najafi, G. & Yusaf, T.F., 2009. "Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network," Renewable Energy, Elsevier, vol. 34(4), pages 976-982.
    47. Ong, H.C. & Mahlia, T.M.I. & Masjuki, H.H. & Norhasyima, R.S., 2011. "Comparison of palm oil, Jatropha curcas and Calophyllum inophyllum for biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3501-3515.
    48. Mallikappa, D.N. & Reddy, Rana Pratap & Murthy, Ch.S.N., 2012. "Performance and emission characteristics of double cylinder CI engine operated with cardanol bio fuel blends," Renewable Energy, Elsevier, vol. 38(1), pages 150-154.
    49. Pugazhvadivu, M. & Jeyachandran, K., 2005. "Investigations on the performance and exhaust emissions of a diesel engine using preheated waste frying oil as fuel," Renewable Energy, Elsevier, vol. 30(14), pages 2189-2202.
    50. Mbarawa, Makame, 2008. "Performance, emission and economic assessment of clove stem oil–diesel blended fuels as alternative fuels for diesel engines," Renewable Energy, Elsevier, vol. 33(5), pages 871-882.
    51. Erol, M. & Haykiri-Acma, H. & Küçükbayrak, S., 2010. "Calorific value estimation of biomass from their proximate analyses data," Renewable Energy, Elsevier, vol. 35(1), pages 170-173.
    52. Smith, Paul C. & Ngothai, Yung & Dzuy Nguyen, Q. & O'Neill, Brian K., 2010. "Improving the low-temperature properties of biodiesel: Methods and consequences," Renewable Energy, Elsevier, vol. 35(6), pages 1145-1151.
    53. Sureshkumar, K. & Velraj, R. & Ganesan, R., 2008. "Performance and exhaust emission characteristics of a CI engine fueled with Pongamia pinnata methyl ester (PPME) and its blends with diesel," Renewable Energy, Elsevier, vol. 33(10), pages 2294-2302.
    54. Rehman, A. & Phalke, Deepak R. & Pandey, Rajesh, 2011. "Alternative fuel for gas turbine: Esterified jatropha oil–diesel blend," Renewable Energy, Elsevier, vol. 36(10), pages 2635-2640.
    55. Haşimoğlu, Can & Ciniviz, Murat & Özsert, İbrahim & İçingür, Yakup & Parlak, Adnan & Sahir Salman, M., 2008. "Performance characteristics of a low heat rejection diesel engine operating with biodiesel," Renewable Energy, Elsevier, vol. 33(7), pages 1709-1715.
    56. Agarwal, Avinash Kumar & Rajamanoharan, K., 2009. "Experimental investigations of performance and emissions of Karanja oil and its blends in a single cylinder agricultural diesel engine," Applied Energy, Elsevier, vol. 86(1), pages 106-112, January.
    57. Banapurmath, N.R. & Tewari, P.G. & Hosmath, R.S., 2008. "Performance and emission characteristics of a DI compression ignition engine operated on Honge, Jatropha and sesame oil methyl esters," Renewable Energy, Elsevier, vol. 33(9), pages 1982-1988.
    58. Poitrat, Etienne, 1999. "The potential of liquid biofuels in France," Renewable Energy, Elsevier, vol. 16(1), pages 1084-1089.
    59. Meher, L.C. & Vidya Sagar, D. & Naik, S.N., 2006. "Technical aspects of biodiesel production by transesterification--a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(3), pages 248-268, June.
    60. Dorado, M.P. & Cruz, F. & Palomar, J.M. & López, F.J., 2006. "An approach to the economics of two vegetable oil-based biofuels in Spain," Renewable Energy, Elsevier, vol. 31(8), pages 1231-1237.
    61. Bari, S. & Lim, T.H. & Yu, C.W., 2002. "Effects of preheating of crude palm oil (CPO) on injection system, performance and emission of a diesel engine," Renewable Energy, Elsevier, vol. 27(3), pages 339-351.
    62. Narayana Reddy, J. & Ramesh, A., 2006. "Parametric studies for improving the performance of a Jatropha oil-fuelled compression ignition engine," Renewable Energy, Elsevier, vol. 31(12), pages 1994-2016.
    63. Agarwal, Deepak & Kumar, Lokesh & Agarwal, Avinash Kumar, 2008. "Performance evaluation of a vegetable oil fuelled compression ignition engine," Renewable Energy, Elsevier, vol. 33(6), pages 1147-1156.
    64. Agarwal, Deepak & Sinha, Shailendra & Agarwal, Avinash Kumar, 2006. "Experimental investigation of control of NOx emissions in biodiesel-fueled compression ignition engine," Renewable Energy, Elsevier, vol. 31(14), pages 2356-2369.
    65. Yusaf, T.F. & Yousif, B.F. & Elawad, M.M., 2011. "Crude palm oil fuel for diesel-engines: Experimental and ANN simulation approaches," Energy, Elsevier, vol. 36(8), pages 4871-4878.
    66. Demirbas, M. Fatih, 2011. "Biofuels from algae for sustainable development," Applied Energy, Elsevier, vol. 88(10), pages 3473-3480.
    67. Srivastava, Anjana & Prasad, Ram, 2000. "Triglycerides-based diesel fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(2), pages 111-133, June.
    68. Nakpong, Piyanuch & Wootthikanokkhan, Sasiwimol, 2010. "High free fatty acid coconut oil as a potential feedstock for biodiesel production in Thailand," Renewable Energy, Elsevier, vol. 35(8), pages 1682-1687.
    69. Katinas, Vladislovas & Markevicius, Antanas & Kavaliauskas, Andrius, 2007. "Current status and prospects of biomass resources for energy production in Lithuania," Renewable Energy, Elsevier, vol. 32(5), pages 884-894.
    70. Hirkude, Jagannath Balasaheb & Padalkar, Atul S., 2012. "Performance and emission analysis of a compression ignition," Applied Energy, Elsevier, vol. 90(1), pages 68-72.
    71. Godiganur, Sharanappa & Suryanarayana Murthy, C.H. & Reddy, Rana Prathap, 2009. "6BTA 5.9 G2-1 Cummins engine performance and emission tests using methyl ester mahua (Madhuca indica) oil/diesel blends," Renewable Energy, Elsevier, vol. 34(10), pages 2172-2177.
    72. Ramadhas, A.S. & Jayaraj, S. & Muraleedharan, C. & Padmakumari, K., 2006. "Artificial neural networks used for the prediction of the cetane number of biodiesel," Renewable Energy, Elsevier, vol. 31(15), pages 2524-2533.
    73. Bozbas, Kahraman, 2008. "Biodiesel as an alternative motor fuel: Production and policies in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 542-552, February.
    74. Pereira, Roberto G. & Oliveira, Cesar D. & Oliveira, Jorge L. & Oliveira, Paulo Cesar P. & Fellows, Carlos E. & Piamba, Oscar E., 2007. "Exhaust emissions and electric energy generation in a stationary engine using blends of diesel and soybean biodiesel," Renewable Energy, Elsevier, vol. 32(14), pages 2453-2460.
    75. Ramadhas, A.S. & Jayaraj, S. & Muraleedharan, C., 2005. "Characterization and effect of using rubber seed oil as fuel in the compression ignition engines," Renewable Energy, Elsevier, vol. 30(5), pages 795-803.
    76. Amigun, B. & Sigamoney, R. & von Blottnitz, H., 2008. "Commercialisation of biofuel industry in Africa: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 690-711, April.
    77. van Eijck, Janske & Romijn, Henny, 2008. "Prospects for Jatropha biofuels in Tanzania: An analysis with Strategic Niche Management," Energy Policy, Elsevier, vol. 36(1), pages 311-325, January.
    78. Qi, D.H. & Geng, L.M. & Chen, H. & Bian, Y.ZH. & Liu, J. & Ren, X.CH., 2009. "Combustion and performance evaluation of a diesel engine fueled with biodiesel produced from soybean crude oil," Renewable Energy, Elsevier, vol. 34(12), pages 2706-2713.
    79. Chang, J. & Leung, Dennis Y. C. & Wu, C. Z. & Yuan, Z. H., 2003. "A review on the energy production, consumption, and prospect of renewable energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(5), pages 453-468, October.
    80. Jayed, M.H. & Masjuki, H.H. & Kalam, M.A. & Mahlia, T.M.I. & Husnawan, M. & Liaquat, A.M., 2011. "Prospects of dedicated biodiesel engine vehicles in Malaysia and Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 220-235, January.
    81. Conceição, Marta M. & Candeia, Roberlúcia A. & Silva, Fernando C. & Bezerra, Aline F. & Fernandes, Valter Jr. & Souza, Antonio G., 2007. "Thermoanalytical characterization of castor oil biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 964-975, June.
    82. Lim, Steven & Teong, Lee Keat, 2010. "Recent trends, opportunities and challenges of biodiesel in Malaysia: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 938-954, April.
    83. Öner, Cengiz & Altun, Sehmus, 2009. "Biodiesel production from inedible animal tallow and an experimental investigation of its use as alternative fuel in a direct injection diesel engine," Applied Energy, Elsevier, vol. 86(10), pages 2114-2120, October.
    84. Puhan, Sukumar & Jegan, R. & Balasubbramanian, K. & Nagarajan, G., 2009. "Effect of injection pressure on performance, emission and combustion characteristics of high linolenic linseed oil methyl ester in a DI diesel engine," Renewable Energy, Elsevier, vol. 34(5), pages 1227-1233.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    2. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Atabani, A.E. & Shahabuddin, M. & Palash, S.M. & Hazrat, M.A., 2013. "Effect of biodiesel from various feedstocks on combustion characteristics, engine durability and materials compatibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 441-455.
    3. Subramaniam, D. & Murugesan, A. & Avinash, A. & Kumaravel, A., 2013. "Bio-diesel production and its engine characteristics—An expatiate view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 361-370.
    4. Mofijur, M. & Atabani, A.E. & Masjuki, H.H. & Kalam, M.A. & Masum, B.M., 2013. "A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 391-404.
    5. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K. & Hazrat, M.A., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel – Part 2: Properties, performance and emission characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1129-1146.
    6. Atabani, A.E. & Silitonga, A.S. & Ong, H.C. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Fayaz, H., 2013. "Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 211-245.
    7. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    8. Arbab, M.I. & Masjuki, H.H. & Varman, M. & Kalam, M.A. & Imtenan, S. & Sajjad, H., 2013. "Fuel properties, engine performance and emission characteristic of common biodiesels as a renewable and sustainable source of fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 133-147.
    9. Altarazi, Yazan S.M. & Abu Talib, Abd Rahim & Yu, Jianglong & Gires, Ezanee & Abdul Ghafir, Mohd Fahmi & Lucas, John & Yusaf, Talal, 2022. "Effects of biofuel on engines performance and emission characteristics: A review," Energy, Elsevier, vol. 238(PC).
    10. Xue, Jinlin & Grift, Tony E. & Hansen, Alan C., 2011. "Effect of biodiesel on engine performances and emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1098-1116, February.
    11. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    12. Datta, Ambarish & Mandal, Bijan Kumar, 2016. "A comprehensive review of biodiesel as an alternative fuel for compression ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 799-821.
    13. Sadeghinezhad, E. & Kazi, S.N. & Sadeghinejad, Foad & Badarudin, A. & Mehrali, Mohammad & Sadri, Rad & Reza Safaei, Mohammad, 2014. "A comprehensive literature review of bio-fuel performance in internal combustion engine and relevant costs involvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 29-44.
    14. Sadeghinezhad, E. & Kazi, S.N. & Badarudin, A. & Oon, C.S. & Zubir, M.N.M. & Mehrali, Mohammad, 2013. "A comprehensive review of bio-diesel as alternative fuel for compression ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 410-424.
    15. Takase, Mohammed & Zhao, Ting & Zhang, Min & Chen, Yao & Liu, Hongyang & Yang, Liuqing & Wu, Xiangyang, 2015. "An expatiate review of neem, jatropha, rubber and karanja as multipurpose non-edible biodiesel resources and comparison of their fuel, engine and emission properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 495-520.
    16. No, Soo-Young, 2011. "Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 131-149, January.
    17. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    18. E, Jiaqiang & Pham, Minhhieu & Zhao, D. & Deng, Yuanwang & Le, DucHieu & Zuo, Wei & Zhu, Hao & Liu, Teng & Peng, Qingguo & Zhang, Zhiqing, 2017. "Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 620-647.
    19. Atabani, A.E. & Silitonga, A.S. & Badruddin, Irfan Anjum & Mahlia, T.M.I. & Masjuki, H.H. & Mekhilef, S., 2012. "A comprehensive review on biodiesel as an alternative energy resource and its characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2070-2093.
    20. Mofijur, M. & Rasul, M.G. & Hyde, J. & Azad, A.K. & Mamat, R. & Bhuiya, M.M.K., 2016. "Role of biofuel and their binary (diesel–biodiesel) and ternary (ethanol–biodiesel–diesel) blends on internal combustion engines emission reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 265-278.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:21:y:2013:i:c:p:633-658. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.