[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v144y2021ics1364032121001313.html
   My bibliography  Save this article

Techno-economics and life-cycle assessment of biological and thermochemical treatment of bio-waste

Author

Listed:
  • Awasthi, Mukesh Kumar
  • Sarsaiya, Surendra
  • Wainaina, Steven
  • Rajendran, Karthik
  • Awasthi, Sanjeev Kumar
  • Liu, Tao
  • Duan, Yumin
  • Jain, Archana
  • Sindhu, Raveendran
  • Binod, Parameswaran
  • Pandey, Ashok
  • Zhang, Zengqiang
  • Taherzadeh, Mohammad J.
Abstract
The energy sector contributed to three-fourth of overall global emissions in the past decade. Biological wastes can be converted to useful energy and other byproducts via biological or thermo-chemical routes. However, issues such as techno-economic feasibility and lack of understanding on the overall lifecycle of a product have hindered commercialization. It is needed to recognize these inter-disciplinary factors. This review attempts to critically evaluate the role of technology, economics and lifecycle assessment of bio-waste in two processing types. This includes: 1. biological and, 2. thermo-chemical route. The key findings of this work are: 1. Policy support is essential for commercialization of a waste treatment technology; 2. adequate emphasis is necessary on the social dimensions in creating awareness; and 3. from a product development perspective, research should focus on industrial needs. The choice of the treatment and their commercialization depends on the regional demand of a product, policy support, and technology maturity. Utilization of bio-wastes to produce value-added products will enhance circular economy, which in turn improves sustainability.

Suggested Citation

  • Awasthi, Mukesh Kumar & Sarsaiya, Surendra & Wainaina, Steven & Rajendran, Karthik & Awasthi, Sanjeev Kumar & Liu, Tao & Duan, Yumin & Jain, Archana & Sindhu, Raveendran & Binod, Parameswaran & Pandey, 2021. "Techno-economics and life-cycle assessment of biological and thermochemical treatment of bio-waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
  • Handle: RePEc:eee:rensus:v:144:y:2021:i:c:s1364032121001313
    DOI: 10.1016/j.rser.2021.110837
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121001313
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.110837?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vasileios Rizos & Arno Behrens & Wytze Van der Gaast & Erwin Hofman & Anastasia Ioannou & Terri Kafyeke & Alexandros Flamos & Roberto Rinaldi & Sotiris Papadelis & Martin Hirschnitz-Garbers & Corrado , 2016. "Implementation of Circular Economy Business Models by Small and Medium-Sized Enterprises (SMEs): Barriers and Enablers," Sustainability, MDPI, vol. 8(11), pages 1-18, November.
    2. Xu, Changqing & Shi, Wenxiao & Hong, Jinglan & Zhang, Fangfang & Chen, Wei, 2015. "Life cycle assessment of food waste-based biogas generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 169-177.
    3. Awasthi, Mukesh Kumar & Sarsaiya, Surendra & Wainaina, Steven & Rajendran, Karthik & Kumar, Sumit & Quan, Wang & Duan, Yumin & Awasthi, Sanjeev Kumar & Chen, Hongyu & Pandey, Ashok & Zhang, Zengqiang , 2019. "A critical review of organic manure biorefinery models toward sustainable circular bioeconomy: Technological challenges, advancements, innovations, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 115-131.
    4. Gunamantha, Made & Sarto,, 2012. "Life cycle assessment of municipal solid waste treatment to energy options: Case study of KARTAMANTUL region, Yogyakarta," Renewable Energy, Elsevier, vol. 41(C), pages 277-284.
    5. Mohammadi, Maedeh & Najafpour, Ghasem D. & Younesi, Habibollah & Lahijani, Pooya & Uzir, Mohamad Hekarl & Mohamed, Abdul Rahman, 2011. "Bioconversion of synthesis gas to second generation biofuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4255-4273.
    6. Torri, Cristian & Pambieri, Giampiero & Gualandi, Chiara & Piraccini, Maurizio & Rombolà, Alessandro G. & Fabbri, Daniele, 2020. "Evaluation of the potential performance of hyphenated pyrolysis-anaerobic digestion (Py-AD) process for carbon negative fuels from woody biomass," Renewable Energy, Elsevier, vol. 148(C), pages 1190-1199.
    7. Caporgno, M.P. & Trobajo, R. & Caiola, N. & Ibáñez, C. & Fabregat, A. & Bengoa, C., 2015. "Biogas production from sewage sludge and microalgae co-digestion under mesophilic and thermophilic conditions," Renewable Energy, Elsevier, vol. 75(C), pages 374-380.
    8. Tomić, Tihomir & Schneider, Daniel Rolph, 2018. "The role of energy from waste in circular economy and closing the loop concept – Energy analysis approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 268-287.
    9. Hidalgo, D. & Martín-Marroquín, J.M. & Corona, F., 2019. "A multi-waste management concept as a basis towards a circular economy model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 481-489.
    10. Yaakob, Zahira & Mohammad, Masita & Alherbawi, Mohammad & Alam, Zahangir & Sopian, Kamaruzaman, 2013. "Overview of the production of biodiesel from Waste cooking oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 184-193.
    11. Shen, Yanwen & Brown, Robert & Wen, Zhiyou, 2014. "Enhancing mass transfer and ethanol production in syngas fermentation of Clostridium carboxidivorans P7 through a monolithic biofilm reactor," Applied Energy, Elsevier, vol. 136(C), pages 68-76.
    12. Bueno, G. & Latasa, I. & Lozano, P.J., 2015. "Comparative LCA of two approaches with different emphasis on energy or material recovery for a municipal solid waste management system in Gipuzkoa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 449-459.
    13. Howaniec, Natalia & Smoliński, Adam, 2017. "Biowaste utilization in the process of co-gasification with bituminous coal and lignite," Energy, Elsevier, vol. 118(C), pages 18-23.
    14. Watson, Jamison & Zhang, Yuanhui & Si, Buchun & Chen, Wan-Ting & de Souza, Raquel, 2018. "Gasification of biowaste: A critical review and outlooks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 1-17.
    15. Zhang, Jingxin & Kan, Xiang & Shen, Ye & Loh, Kai-Chee & Wang, Chi-Hwa & Dai, Yanjun & Tong, Yen Wah, 2018. "A hybrid biological and thermal waste-to-energy system with heat energy recovery and utilization for solid organic waste treatment," Energy, Elsevier, vol. 152(C), pages 214-222.
    16. Claypool, Joshua T. & Simmons, Christopher W., 2016. "Hybrid thermochemical/biological processing: The economic hurdles and opportunities for biofuel production from bio-oil," Renewable Energy, Elsevier, vol. 96(PA), pages 450-457.
    17. San Miguel, G. & Corona, B., 2014. "Hybridizing concentrated solar power (CSP) with biogas and biomethane as an alternative to natural gas: Analysis of environmental performance using LCA," Renewable Energy, Elsevier, vol. 66(C), pages 580-587.
    18. Fatih Demirbas, M., 2009. "Biorefineries for biofuel upgrading: A critical review," Applied Energy, Elsevier, vol. 86(Supplemen), pages 151-161, November.
    19. Soares, N. & Bastos, J. & Pereira, L. Dias & Soares, A. & Amaral, A.R. & Asadi, E. & Rodrigues, E. & Lamas, F.B. & Monteiro, H. & Lopes, M.A.R. & Gaspar, A.R., 2017. "A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 845-860.
    20. Guo, Mingxin & Song, Weiping & Buhain, Jeremy, 2015. "Bioenergy and biofuels: History, status, and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 712-725.
    21. Nipattummakul, Nimit & Ahmed, Islam I. & Kerdsuwan, Somrat & Gupta, Ashwani K., 2012. "Steam gasification of oil palm trunk waste for clean syngas production," Applied Energy, Elsevier, vol. 92(C), pages 778-782.
    22. Kung, Chih-Chun & McCarl, Bruce A. & Cao, Xiaoyong, 2013. "Economics of pyrolysis-based energy production and biochar utilization: A case study in Taiwan," Energy Policy, Elsevier, vol. 60(C), pages 317-323.
    23. Ahmed, I.I. & Gupta, A.K., 2010. "Pyrolysis and gasification of food waste: Syngas characteristics and char gasification kinetics," Applied Energy, Elsevier, vol. 87(1), pages 101-108, January.
    24. Saraeian, Alireza & Nolte, Michael W. & Shanks, Brent H., 2019. "Deoxygenation of biomass pyrolysis vapors: Improving clarity on the fate of carbon," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 262-280.
    25. Vanessa Zeller & Edgar Battand Towa Kouokam & Marc Degrez & Wouter Achten, 2019. "Urban waste flows and their potential for a circular economy model at city-region level," ULB Institutional Repository 2013/278528, ULB -- Universite Libre de Bruxelles.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Anna Cusenza & Maurizio Cellura & Francesco Guarino & Sonia Longo, 2021. "Life Cycle Environmental Assessment of Energy Valorization of the Residual Agro-Food Industry," Energies, MDPI, vol. 14(17), pages 1-16, September.
    2. Verma, Shivpal & Dregulo, Andrei Mikhailovich & Kumar, Vinay & Bhargava, Preeti Chaturvedi & Khan, Nawaz & Singh, Anuradha & Sun, Xinwei & Sindhu, Raveendran & Binod, Parameswaran & Zhang, Zengqiang &, 2023. "Reaction engineering during biomass gasification and conversion to energy," Energy, Elsevier, vol. 266(C).
    3. Tiago Florindo & Ana I. Ferraz & Ana C. Rodrigues & Leonel J. R. Nunes, 2022. "Residual Biomass Recovery in the Wine Sector: Creation of Value Chains for Vine Pruning," Agriculture, MDPI, vol. 12(5), pages 1-18, May.
    4. Awasthi, Mukesh Kumar & Sindhu, Raveendran & Sirohi, Ranjna & Kumar, Vinod & Ahluwalia, Vivek & Binod, Parameswaran & Juneja, Ankita & Kumar, Deepak & Yan, Binghua & Sarsaiya, Surendra & Zhang, Zengqi, 2022. "Agricultural waste biorefinery development towards circular bioeconomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    5. Mariyam, Sabah & Shahbaz, Muhammad & Al-Ansari, Tareq & Mackey, Hamish. R & McKay, Gordon, 2022. "A critical review on co-gasification and co-pyrolysis for gas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    6. Amos Ncube & Sandile Mtetwa & Mahak Bukhari & Gabriella Fiorentino & Renato Passaro, 2023. "Circular Economy and Green Chemistry: The Need for Radical Innovative Approaches in the Design for New Products," Energies, MDPI, vol. 16(4), pages 1-21, February.
    7. Awasthi, Mukesh Kumar & Singh, Ekta & Binod, Parameswaran & Sindhu, Raveendran & Sarsaiya, Surendra & Kumar, Aman & Chen, Hongyu & Duan, Yumin & Pandey, Ashok & Kumar, Sunil & Taherzadeh, Mohammad J. , 2022. "Biotechnological strategies for bio-transforming biosolid into resources toward circular bio-economy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hossain, Md. Sanowar & Masuk, Nahid Imtiaz & Das, Barun K. & Das, Arnob & Kibria, Md. Golam & Chowdhury, Miftahul Mobin & Shozib, Imtiaz Ahmed, 2023. "Theoretical estimation of energy potential and environmental emissions mitigation for major livestock manure in Bangladesh," Renewable Energy, Elsevier, vol. 217(C).
    2. Awasthi, Mukesh Kumar & Sindhu, Raveendran & Sirohi, Ranjna & Kumar, Vinod & Ahluwalia, Vivek & Binod, Parameswaran & Juneja, Ankita & Kumar, Deepak & Yan, Binghua & Sarsaiya, Surendra & Zhang, Zengqi, 2022. "Agricultural waste biorefinery development towards circular bioeconomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    3. Abubackar, Haris Nalakath & Bengelsdorf, Frank R. & Dürre, Peter & Veiga, María C. & Kennes, Christian, 2016. "Improved operating strategy for continuous fermentation of carbon monoxide to fuel-ethanol by clostridia," Applied Energy, Elsevier, vol. 169(C), pages 210-217.
    4. Salehi-Amiri, Amirhossein & Akbapour, Navid & Hajiaghaei-Keshteli, Mostafa & Gajpal, Yuvraj & Jabbarzadeh, Armin, 2022. "Designing an effective two-stage, sustainable, and IoT based waste management system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    5. Cremiato, Raffaele & Mastellone, Maria Laura & Tagliaferri, Carla & Zaccariello, Lucio & Lettieri, Paola, 2018. "Environmental impact of municipal solid waste management using Life Cycle Assessment: The effect of anaerobic digestion, materials recovery and secondary fuels production," Renewable Energy, Elsevier, vol. 124(C), pages 180-188.
    6. Chen, Wei & Geng, Yong & Hong, Jinglan & Kua, Harn Wei & Xu, Changqing & Yu, Nan, 2017. "Life cycle assessment of antibiotic mycelial residues management in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 830-838.
    7. Karmee, Sanjib Kumar, 2016. "Liquid biofuels from food waste: Current trends, prospect and limitation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 945-953.
    8. Barros, Murillo Vetroni & Salvador, Rodrigo & de Francisco, Antonio Carlos & Piekarski, Cassiano Moro, 2020. "Mapping of research lines on circular economy practices in agriculture: From waste to energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    9. Pierie, F. & Benders, R.M.J. & Bekkering, J. & van Gemert, W.J.Th. & Moll, H.C., 2016. "Lessons from spatial and environmental assessment of energy potentials for Anaerobic Digestion production systems applied to the Netherlands," Applied Energy, Elsevier, vol. 176(C), pages 233-244.
    10. Ghulamullah Maitlo & Imran Ali & Kashif Hussain Mangi & Safdar Ali & Hubdar Ali Maitlo & Imran Nazir Unar & Abdul Majeed Pirzada, 2022. "Thermochemical Conversion of Biomass for Syngas Production: Current Status and Future Trends," Sustainability, MDPI, vol. 14(5), pages 1-30, February.
    11. Ahmad, Farah B. & Zhang, Zhanying & Doherty, William O.S. & O'Hara, Ian M., 2019. "The outlook of the production of advanced fuels and chemicals from integrated oil palm biomass biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 386-411.
    12. Dmitry Porshnov, 2022. "Evolution of pyrolysis and gasification as waste to energy tools for low carbon economy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(1), January.
    13. Bedoić, Robert & Špehar, Ana & Puljko, Josip & Čuček, Lidija & Ćosić, Boris & Pukšec, Tomislav & Duić, Neven, 2020. "Opportunities and challenges: Experimental and kinetic analysis of anaerobic co-digestion of food waste and rendering industry streams for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    14. Esfilar, Reza & Bagheri, Mehdi & Golestani, Behrooz, 2021. "Technoeconomic feasibility review of hybrid waste to energy system in the campus: A case study for the University of Victoria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    15. Ignacio, Luís Henrique da Silva & Santos, Pedro Eduardo de Almeida & Duarte, Carlos Antonio Ribeiro, 2019. "An experimental assessment of Eucalyptus urosemente energy potential for biomass production in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 361-369.
    16. Reyes, Y.A. & Pérez, M. & Barrera, E.L. & Martínez, Y. & Cheng, K.K., 2022. "Thermochemical conversion processes of Dichrostachys cinerea as a biofuel: A review of the Cuban case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    17. Mancini, G. & Luciano, A. & Bolzonella, D. & Fatone, F. & Viotti, P. & Fino, D., 2021. "A water-waste-energy nexus approach to bridge the sustainability gap in landfill-based waste management regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    18. Yang, Xufeng & Yu, Minggao & Zheng, Kai & Wan, Shaojie & Wang, Liang, 2019. "A comparative investigation of premixed flame propagation behavior of syngas-air mixtures in closed and half-open ducts," Energy, Elsevier, vol. 178(C), pages 436-446.
    19. Mechthild Donner & Anne Verniquet & Jan Broeze & Katrin Kayser & Hugo de Vries, 2021. "Critical success and risk factors for circular business models valorising agricultural waste and by-products," Post-Print hal-03004851, HAL.
    20. Rohit Agrawal & Vishal A. Wankhede & Anil Kumar & Sunil Luthra, 2021. "Analysing the roadblocks of circular economy adoption in the automobile sector: Reducing waste and environmental perspectives," Business Strategy and the Environment, Wiley Blackwell, vol. 30(2), pages 1051-1066, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:144:y:2021:i:c:s1364032121001313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.