[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v12y2008i2p397-416.html
   My bibliography  Save this article

The reduction and control technology of tar during biomass gasification/pyrolysis: An overview

Author

Listed:
  • Han, Jun
  • Kim, Heejoon
Abstract
Biomass is an important primary energy source as well as renewable energy source. As the most promising biomass utilization method, gasification/pyrolysis produces not only useful fuel gases, char and chemicals, but also some byproducts like fly ash, NOx, SO2 and tar. Tar in the product gases will condense at low temperature, and lead to clogged or blockage in fuel lines, filters and engines. Moreover, too much tar in product gases will reduce the utilization efficiency of biomass. Therefore, the reduction or decomposition of tar in biomass derived fuel gases is one of the biggest obstacles in its utilization for power generation. In this paper, we review the literatures pertaining to tar reduction or destruction methods during biomass gasification/pyrolysis. On the basis of their characteristics, the current tar reduction or destruction methods can be broadly divided into five main groups: mechanism methods, self-modification, thermal cracking, catalyst cracking and plasma methods.

Suggested Citation

  • Han, Jun & Kim, Heejoon, 2008. "The reduction and control technology of tar during biomass gasification/pyrolysis: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 397-416, February.
  • Handle: RePEc:eee:rensus:v:12:y:2008:i:2:p:397-416
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(06)00114-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fagbemi, L & Khezami, L & Capart, R, 2001. "Pyrolysis products from different biomasses: application to the thermal cracking of tar," Applied Energy, Elsevier, vol. 69(4), pages 293-306, August.
    2. Bhattacharya, S.C & Mizanur Rahman Siddique, A.H.Md & Pham, Hoang-Luong, 1999. "A study on wood gasification for low-tar gas production," Energy, Elsevier, vol. 24(4), pages 285-296.
    3. Devi, Lopamudra & Ptasinski, Krzysztof J. & Janssen, Frans J.J.G. & van Paasen, Sander V.B. & Bergman, Patrick C.A. & Kiel, Jacob H.A., 2005. "Catalytic decomposition of biomass tars: use of dolomite and untreated olivine," Renewable Energy, Elsevier, vol. 30(4), pages 565-587.
    4. Jin, Gong & Iwaki, Hiroyuki & Arai, Norio & Kitagawa, Kuniyuki, 2005. "Study on the gasification of wastepaper/carbon dioxide catalyzed by molten carbonate salts," Energy, Elsevier, vol. 30(7), pages 1192-1203.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anis, Samsudin & Zainal, Z.A., 2011. "Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2355-2377, June.
    2. Shen, Yafei, 2015. "Chars as carbonaceous adsorbents/catalysts for tar elimination during biomass pyrolysis or gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 281-295.
    3. Font Palma, Carolina, 2013. "Modelling of tar formation and evolution for biomass gasification: A review," Applied Energy, Elsevier, vol. 111(C), pages 129-141.
    4. Mauerhofer, A.M. & Schmid, J.C. & Benedikt, F. & Fuchs, J. & Müller, S. & Hofbauer, H., 2019. "Dual fluidized bed steam gasification: Change of product gas quality along the reactor height," Energy, Elsevier, vol. 173(C), pages 1256-1272.
    5. Chen, Wei & Annamalai, Kalyan & Ansley, R. James & Mirik, Mustafa, 2012. "Updraft fixed bed gasification of mesquite and juniper wood samples," Energy, Elsevier, vol. 41(1), pages 454-461.
    6. Ahmed, A.M.A & Salmiaton, A. & Choong, T.S.Y & Wan Azlina, W.A.K.G., 2015. "Review of kinetic and equilibrium concepts for biomass tar modeling by using Aspen Plus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1623-1644.
    7. Berrueco, C. & Montané, D. & Matas Güell, B. & del Alamo, G., 2014. "Effect of temperature and dolomite on tar formation during gasification of torrefied biomass in a pressurized fluidized bed," Energy, Elsevier, vol. 66(C), pages 849-859.
    8. Masnadi, Mohammad S. & Grace, John R. & Bi, Xiaotao T. & Lim, C. Jim & Ellis, Naoko & Li, Yong Hua & Watkinson, A. Paul, 2015. "From coal towards renewables: Catalytic/synergistic effects during steam co-gasification of switchgrass and coal in a pilot-scale bubbling fluidized bed," Renewable Energy, Elsevier, vol. 83(C), pages 918-930.
    9. Ngo, Son Ich & Nguyen, Thanh D.B. & Lim, Young-Il & Song, Byung-Ho & Lee, Uen-Do & Choi, Young-Tai & Song, Jae-Hun, 2011. "Performance evaluation for dual circulating fluidized-bed steam gasifier of biomass using quasi-equilibrium three-stage gasification model," Applied Energy, Elsevier, vol. 88(12), pages 5208-5220.
    10. Andrew N. Amenaghawon & Chinedu L. Anyalewechi & Charity O. Okieimen & Heri Septya Kusuma, 2021. "Biomass pyrolysis technologies for value-added products: a state-of-the-art review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14324-14378, October.
    11. Sharma, Monikankana & N, Rakesh & Dasappa, S., 2016. "Solid oxide fuel cell operating with biomass derived producer gas: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 450-463.
    12. Marcin Siedlecki & Wiebren De Jong & Adrian H.M. Verkooijen, 2011. "Fluidized Bed Gasification as a Mature And Reliable Technology for the Production of Bio-Syngas and Applied in the Production of Liquid Transportation Fuels—A Review," Energies, MDPI, vol. 4(3), pages 1-46, March.
    13. Ruivo, Luís & Silva, Tiago & Neves, Daniel & Tarelho, Luís & Frade, Jorge, 2023. "Thermodynamic guidelines for improved operation of iron-based catalysts in gasification of biomass," Energy, Elsevier, vol. 268(C).
    14. Nargess Puadian & Jingge Li & Shusheng Pang, 2014. "Analysis of Operation Parameters in a Dual Fluidized Bed Biomass Gasifier Integrated with a Biomass Rotary Dryer: Development and Application of a System Model," Energies, MDPI, vol. 7(7), pages 1-22, July.
    15. Di Wu & Heming Dong & Jiyi Luan & Qian Du & Jianmin Gao & Dongdong Feng & Yu Zhang & Ziqi Zhao & Dun Li, 2023. "Reaction Molecular Dynamics Study on the Mechanism of Alkali Metal Sodium at the Initial Stage of Naphthalene Pyrolysis Evolution," Energies, MDPI, vol. 16(17), pages 1-19, August.
    16. Raman, P. & Ram, N.K. & Gupta, Ruchi, 2013. "A dual fired downdraft gasifier system to produce cleaner gas for power generation: Design, development and performance analysis," Energy, Elsevier, vol. 54(C), pages 302-314.
    17. Motasemi, F. & Afzal, Muhammad T., 2013. "A review on the microwave-assisted pyrolysis technique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 317-330.
    18. Csaba Fogarassy & Laszlo Toth & Marton Czikkely & David Christian Finger, 2019. "Improving the Efficiency of Pyrolysis and Increasing the Quality of Gas Production through Optimization of Prototype Systems," Resources, MDPI, vol. 8(4), pages 1-14, December.
    19. Gao, Ningbo & Salisu, Jamilu & Quan, Cui & Williams, Paul, 2021. "Modified nickel-based catalysts for improved steam reforming of biomass tar: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    20. Zhou, Yuguang & Zhang, Zongxi & Zhang, Yixiang & Wang, Yungang & Yu, Yang & Ji, Fang & Ahmad, Riaz & Dong, Renjie, 2016. "A comprehensive review on densified solid biofuel industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1412-1428.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:12:y:2008:i:2:p:397-416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.