[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v80y2017icp1162-1174.html
   My bibliography  Save this article

Life cycle sustainability assessment of fly ash concrete structures

Author

Listed:
  • Wang, JingJing
  • Wang, YuanFeng
  • Sun, YiWen
  • Tingley, Danielle Densley
  • Zhang, YuRong
Abstract
Concrete is one of the most widespread construction materials in the world, but its production is responsible for significant amounts of energy consumption, and even greater greenhouse gas emissions. However, the substitution of Portland cement with fly ash (FA) reduces both the energy consumption and the greenhouse gas emissions generated during the production of clinker. Currently, most studies of FA concrete focus on mechanical properties, sustainability assessments (environment, society and economy) of FA during its life cycle have not been reported. This paper presents a life cycle sustainability assessment (LCSA) that brings together environmental, economic and social impacts using a proposed three-dimensional coordinate diagram to combine the different units into a single sustainable value. The assessment method is applied to different substitutions of FA in concrete to ascertain the optimum substitution percentage across these three factors. Monte Carlo simulation is then used to evaluate the durability of concrete structures with different FA addition in order to calculate their service life. A case study is conducted of a bridge structure with different FA substitutions; this demonstrates that the addition of FA would improve the sustainability of concrete significantly in the short term. However, when the durability and service life of the structure are taken into account, without maintenance, the use of FA concrete may not improve the environment performance due a potentially shortened service life, but it can reduce the social burden and save costs significantly over the long term.

Suggested Citation

  • Wang, JingJing & Wang, YuanFeng & Sun, YiWen & Tingley, Danielle Densley & Zhang, YuRong, 2017. "Life cycle sustainability assessment of fly ash concrete structures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1162-1174.
  • Handle: RePEc:eee:rensus:v:80:y:2017:i:c:p:1162-1174
    DOI: 10.1016/j.rser.2017.05.232
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117308791
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.05.232?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu Liu, 2015. "China?s Carbon Emissions Report 2015," Working Paper 269176, Harvard University OpenScholar.
    2. Park, Junghoon & Tae, Sungho & Kim, Taehyung, 2012. "Life cycle CO2 assessment of concrete by compressive strength on construction site in Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2940-2946.
    3. Shen, Lei & Gao, Tianming & Zhao, Jianan & Wang, Limao & Wang, Lan & Liu, Litao & Chen, Fengnan & Xue, Jingjing, 2014. "Factory-level measurements on CO2 emission factors of cement production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 337-349.
    4. Ali, M.B. & Saidur, R. & Hossain, M.S., 2011. "A review on emission analysis in cement industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2252-2261, June.
    5. Kim, Taehyoung & Tae, Sungho & Roh, Seungjun, 2013. "Assessment of the CO2 emission and cost reduction performance of a low-carbon-emission concrete mix design using an optimal mix design system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 729-741.
    6. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    7. Islam, Hamidul & Jollands, Margaret & Setunge, Sujeeva, 2015. "Life cycle assessment and life cycle cost implication of residential buildings—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 129-140.
    8. Hasanbeigi, Ali & Price, Lynn & Lin, Elina, 2012. "Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: A technical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6220-6238.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuowen Zhou & Min Zhou & Yuanfeng Wang & Yuanlin Gao & Yinshan Liu & Chengcheng Shi & Yongmao Lu & Tong Zhou, 2020. "Bibliometric and Social Network Analysis of Civil Engineering Sustainability Research from 2015 to 2019," Sustainability, MDPI, vol. 12(17), pages 1-18, August.
    2. Christina Wulf & Jasmin Werker & Christopher Ball & Petra Zapp & Wilhelm Kuckshinrichs, 2019. "Review of Sustainability Assessment Approaches Based on Life Cycles," Sustainability, MDPI, vol. 11(20), pages 1-43, October.
    3. Mohammed K. H. Radwan & Chiu Chuen Onn & Kim Hung Mo & Soon Poh Yap & Ren Jie Chin & Sai Hin Lai, 2022. "Sustainable ternary cement blends with high-volume ground granulated blast furnace slag–fly ash," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4751-4785, April.
    4. Moins, B. & France, C. & Van den bergh, W. & Audenaert, A., 2020. "Implementing life cycle cost analysis in road engineering: A critical review on methodological framework choices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    5. Bergen, Sophia L. & Zemberekci, Lyn & Nair, Sriramya Duddukuri, 2022. "A review of conventional and alternative cementitious materials for geothermal wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    6. Natalia Muñoz López & Jose Luis Santolaya Sáenz & Anna Biedermann & Ana Serrano Tierz, 2020. "Sustainability Assessment of Product–Service Systems Using Flows between Systems Approach," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    7. Liu, Yinshan & Wang, Yuanfeng & Shi, Chengcheng & Zhang, Weijun & Luo, Wei & Wang, Jingjing & Li, Keping & Yeung, Ngai & Kite, Steve, 2022. "Assessing the CO2 reduction target gap and sustainability for bridges in China by 2040," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    8. Zandifaez, Peyman & Nezhad, Ali Akbar & Zhou, Hongyu & Dias-da-Costa, D., 2024. "A systematic review on energy-efficient concrete: Indicators, performance metrics, strategies, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).
    9. Shamraiz Ahmad & Kuan Yew Wong & Babar Zaman, 2019. "A Comprehensive and Integrated Stochastic-Fuzzy Method for Sustainability Assessment in the Malaysian Food Manufacturing Industry," Sustainability, MDPI, vol. 11(4), pages 1-23, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Tianming & Shen, Lei & Shen, Ming & Liu, Litao & Chen, Fengnan & Gao, Li, 2017. "Evolution and projection of CO2 emissions for China's cement industry from 1980 to 2020," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 522-537.
    2. Tae Hyoung Kim & Chang U Chae & Gil Hwan Kim & Hyoung Jae Jang, 2016. "Analysis of CO 2 Emission Characteristics of Concrete Used at Construction Sites," Sustainability, MDPI, vol. 8(4), pages 1-14, April.
    3. Shen, Weiguo & Cao, Liu & Li, Qiu & Zhang, Wensheng & Wang, Guiming & Li, Chaochao, 2015. "Quantifying CO2 emissions from China’s cement industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1004-1012.
    4. Hache, Emmanuel & Simoën, Marine & Seck, Gondia Sokhna & Bonnet, Clément & Jabberi, Aymen & Carcanague, Samuel, 2020. "The impact of future power generation on cement demand: An international and regional assessment based on climate scenarios," International Economics, Elsevier, vol. 163(C), pages 114-133.
    5. Seunghyun Son & Dongjoo Lee & Jinhyuk Oh & Sunkuk Kim, 2021. "Embodied CO 2 Reduction Effects of Free-Form Concrete Panel Production Using Rod-Type Molds with 3D Plastering Technique," Sustainability, MDPI, vol. 13(18), pages 1-14, September.
    6. Junxiao Wei & Kuang Cen, 2019. "A preliminary calculation of cement carbon dioxide in China from 1949 to 2050," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(8), pages 1343-1362, December.
    7. Cao, Zhi & Shen, Lei & Zhao, Jianan & Liu, Litao & Zhong, Shuai & Yang, Yan, 2016. "Modeling the dynamic mechanism between cement CO2 emissions and clinker quality to realize low-carbon cement," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 116-126.
    8. Hurmekoski, Elias & Jonsson, Ragnar & Nord, Tomas, 2015. "Context, drivers, and future potential for wood-frame multi-story construction in Europe," Technological Forecasting and Social Change, Elsevier, vol. 99(C), pages 181-196.
    9. Jozef Švajlenka & Mária Kozlovská, 2020. "Analysis of the Energy Balance of Constructions Based on Wood during Their Use in Connection with CO 2 Emissions," Energies, MDPI, vol. 13(18), pages 1-16, September.
    10. Ä°rem Åžanal, 2018. "Discussion on the effectiveness of cement replacement for carbon dioxide (CO2) emission reduction in concrete," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(2), pages 366-378, April.
    11. Seungjun Roh & Sungho Tae, 2016. "Building Simplified Life Cycle CO 2 Emissions Assessment Tool (B‐SCAT) to Support Low‐Carbon Building Design in South Korea," Sustainability, MDPI, vol. 8(6), pages 1-22, June.
    12. Shen, Weiguo & Liu, Yi & Yan, Bilan & Wang, Jing & He, Pengtao & Zhou, Congcong & Huo, Xujia & Zhang, Wuzong & Xu, Gelong & Ding, Qingjun, 2017. "Cement industry of China: Driving force, environment impact and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 618-628.
    13. Junxiao Wei & Kuang Cen & Yuanbo Geng, 2019. "Evaluation and mitigation of cement CO2 emissions: projection of emission scenarios toward 2030 in China and proposal of the roadmap to a low-carbon world by 2050," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(2), pages 301-328, February.
    14. Tae Hyoung Kim & Chang U Chae, 2016. "Environmental Impact Analysis of Acidification and Eutrophication Due to Emissions from the Production of Concrete," Sustainability, MDPI, vol. 8(6), pages 1-20, June.
    15. Ofosu-Adarkwa, Jeffrey & Xie, Naiming & Javed, Saad Ahmed, 2020. "Forecasting CO2 emissions of China's cement industry using a hybrid Verhulst-GM(1,N) model and emissions' technical conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    16. Han-Seung Lee & Xiao-Yong Wang, 2016. "Evaluation of the Carbon Dioxide Uptake of Slag-Blended Concrete Structures, Considering the Effect of Carbonation," Sustainability, MDPI, vol. 8(4), pages 1-18, March.
    17. Roh, Seungjun & Tae, Sungho, 2017. "An integrated assessment system for managing life cycle CO2 emissions of a building," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 265-275.
    18. Xiao-Yong Wang, 2019. "Effect of Carbon Pricing on Optimal Mix Design of Sustainable High-Strength Concrete," Sustainability, MDPI, vol. 11(20), pages 1-17, October.
    19. Fred Edmond Boafo & Jin-Hee Kim & Jun-Tae Kim, 2016. "Performance of Modular Prefabricated Architecture: Case Study-Based Review and Future Pathways," Sustainability, MDPI, vol. 8(6), pages 1-16, June.
    20. Kusuma, Ravi Teja & Hiremath, Rahul B. & Rajesh, Pachimatla & Kumar, Bimlesh & Renukappa, Suresh, 2022. "Sustainable transition towards biomass-based cement industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:80:y:2017:i:c:p:1162-1174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.