[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v51y2015icp182-196.html
   My bibliography  Save this article

Hierarchical methodology to optimize the design of stand-alone electrification systems for rural communities considering technical and social criteria

Author

Listed:
  • Domenech, B.
  • Ferrer-Martí, L.
  • Pastor, R.
Abstract
Stand-alone electrification systems based on the use of renewable energies are suitable to electrify isolated rural communities in developing countries. For their design several support tools exist, but they do not cover some of the technical and social existing constraints and they do not consider the project detail. In this context, this research aims to develop a methodology to optimize the design of such systems, combining the wind and solar generation technologies as well as microgrids and individual systems as distribution scheme, and including economical, technical and social considerations. The design methodology is divided in three stages. First, the characteristics of the target community are gathered. Secondly, the design process is realized in three decision levels, ordered according to the importance of the decisions taken. At each level several electrification alternatives are generated and then the most appropriate is selected. Third, the final solution cost can be optionally tried to be improved, maintaining the decisions previously taken. The design methodology has been applied to a community to show its suitability to assist rural electrification promoters to design socially adapted and sustainable projects.

Suggested Citation

  • Domenech, B. & Ferrer-Martí, L. & Pastor, R., 2015. "Hierarchical methodology to optimize the design of stand-alone electrification systems for rural communities considering technical and social criteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 182-196.
  • Handle: RePEc:eee:rensus:v:51:y:2015:i:c:p:182-196
    DOI: 10.1016/j.rser.2015.06.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115005870
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.06.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karger, Cornelia R. & Hennings, Wilfried, 2009. "Sustainability evaluation of decentralized electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 583-593, April.
    2. Alarcon-Rodriguez, Arturo & Ault, Graham & Galloway, Stuart, 2010. "Multi-objective planning of distributed energy resources: A review of the state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1353-1366, June.
    3. Ferrer-Martí, L. & Domenech, B. & García-Villoria, A. & Pastor, R., 2013. "A MILP model to design hybrid wind–photovoltaic isolated rural electrification projects in developing countries," European Journal of Operational Research, Elsevier, vol. 226(2), pages 293-300.
    4. Akella, A.K. & Sharma, M.P. & Saini, R.P., 2007. "Optimum utilization of renewable energy sources in a remote area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 894-908, June.
    5. Georgopoulou, E. & Lalas, D. & Papagiannakis, L., 1997. "A multicriteria decision aid approach for energy planning problems: The case of renewable energy option," European Journal of Operational Research, Elsevier, vol. 103(1), pages 38-54, November.
    6. P. L. Yu, 1973. "A Class of Solutions for Group Decision Problems," Management Science, INFORMS, vol. 19(8), pages 936-946, April.
    7. Domenech, B. & Ferrer-Martí, L. & Pastor, R., 2015. "Including management and security of supply constraints for designing stand-alone electrification systems in developing countries," Renewable Energy, Elsevier, vol. 80(C), pages 359-369.
    8. Mendes, Gonçalo & Ioakimidis, Christos & Ferrão, Paulo, 2011. "On the planning and analysis of Integrated Community Energy Systems: A review and survey of available tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4836-4854.
    9. Løken, Espen, 2007. "Use of multicriteria decision analysis methods for energy planning problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1584-1595, September.
    10. Henao, Felipe & Cherni, Judith A. & Jaramillo, Patricia & Dyner, Isaac, 2012. "A multicriteria approach to sustainable energy supply for the rural poor," European Journal of Operational Research, Elsevier, vol. 218(3), pages 801-809.
    11. Pohekar, S. D. & Ramachandran, M., 2004. "Application of multi-criteria decision making to sustainable energy planning--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(4), pages 365-381, August.
    12. Kirubi, Charles & Jacobson, Arne & Kammen, Daniel M. & Mills, Andrew, 2009. "Community-Based Electric Micro-Grids Can Contribute to Rural Development: Evidence from Kenya," World Development, Elsevier, vol. 37(7), pages 1208-1221, July.
    13. Zhou, Wei & Lou, Chengzhi & Li, Zhongshi & Lu, Lin & Yang, Hongxing, 2010. "Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems," Applied Energy, Elsevier, vol. 87(2), pages 380-389, February.
    14. Diaz-Balteiro, Luis & Romero, Carlos, 2004. "In search of a natural systems sustainability index," Ecological Economics, Elsevier, vol. 49(3), pages 401-405, July.
    15. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhao, Jun-Hong, 2009. "Review on multi-criteria decision analysis aid in sustainable energy decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2263-2278, December.
    16. �lvaro Fern�ndez-Baldor & Alejandra Boni & Pau Lillo & Andr�s Hueso, 2014. "Are technological projects reducing social inequalities and improving people's well-being? A capability approach analysis of renewable energy-based electrification projects in Cajamarca, Peru," Journal of Human Development and Capabilities, Taylor & Francis Journals, vol. 15(1), pages 13-27, January.
    17. Baños, R. & Manzano-Agugliaro, F. & Montoya, F.G. & Gil, C. & Alcayde, A. & Gómez, J., 2011. "Optimization methods applied to renewable and sustainable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1753-1766, May.
    18. Raphaële Thery & Pascale Zarate, 2009. "Energy planning: a multi-level and multicriteria decision making structure proposal," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 17(3), pages 265-274, September.
    19. Yadoo, Annabel & Cruickshank, Heather, 2012. "The role for low carbon electrification technologies in poverty reduction and climate change strategies: A focus on renewable energy mini-grids with case studies in Nepal, Peru and Kenya," Energy Policy, Elsevier, vol. 42(C), pages 591-602.
    20. Ashok, S., 2007. "Optimised model for community-based hybrid energy system," Renewable Energy, Elsevier, vol. 32(7), pages 1155-1164.
    21. Zhou, P. & Ang, B.W. & Poh, K.L., 2006. "Decision analysis in energy and environmental modeling: An update," Energy, Elsevier, vol. 31(14), pages 2604-2622.
    22. Chaurey, Akanksha & Ranganathan, Malini & Mohanty, Parimita, 2004. "Electricity access for geographically disadvantaged rural communities--technology and policy insights," Energy Policy, Elsevier, vol. 32(15), pages 1693-1705, October.
    23. Kanagawa, Makoto & Nakata, Toshihiko, 2008. "Assessment of access to electricity and the socio-economic impacts in rural areas of developing countries," Energy Policy, Elsevier, vol. 36(6), pages 2016-2029, June.
    24. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    25. Ferrer-Martí, Laia & Garwood, Anna & Chiroque, José & Ramirez, Benito & Marcelo, Oliver & Garfí, Marianna & Velo, Enrique, 2012. "Evaluating and comparing three community small-scale wind electrification projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5379-5390.
    26. Rahman, Md. Mizanur & Paatero, Jukka V. & Lahdelma, Risto, 2013. "Evaluation of choices for sustainable rural electrification in developing countries: A multicriteria approach," Energy Policy, Elsevier, vol. 59(C), pages 589-599.
    27. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    28. Afgan, Naim H. & Carvalho, Maria G. & Hovanov, Nikolai V., 2000. "Energy system assessment with sustainability indicators," Energy Policy, Elsevier, vol. 28(9), pages 603-612, July.
    29. Elma, Onur & Selamogullari, Ugur Savas, 2012. "A comparative sizing analysis of a renewable energy supplied stand-alone house considering both demand side and source side dynamics," Applied Energy, Elsevier, vol. 96(C), pages 400-408.
    30. Cherni, Judith A. & Dyner, Isaac & Henao, Felipe & Jaramillo, Patricia & Smith, Ricardo & Font, Raul Olalde, 2007. "Energy supply for sustainable rural livelihoods. A multi-criteria decision-support system," Energy Policy, Elsevier, vol. 35(3), pages 1493-1504, March.
    31. Various, 1973. "Conference Programs," NBER Chapters, in: The New Realities of the Business Cycle, pages 126-131, National Bureau of Economic Research, Inc.
    32. Gupta, C. L., 2003. "Role of renewable energy technologies in generating sustainable livelihoods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(2), pages 155-174, April.
    33. Perera, A.T.D. & Attalage, R.A. & Perera, K.K.C.K. & Dassanayake, V.P.C., 2013. "A hybrid tool to combine multi-objective optimization and multi-criterion decision making in designing standalone hybrid energy systems," Applied Energy, Elsevier, vol. 107(C), pages 412-425.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juanpera, M. & Domenech, B. & Ferrer-Martí, L. & Garzón, A. & Pastor, R., 2021. "Renewable-based electrification for remote locations. Does short-term success endure over time? A case study in Peru," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    2. Andrea Micangeli & Riccardo Del Citto & Isaac Nzue Kiva & Simone Giovanni Santori & Valeria Gambino & Jeremiah Kiplagat & Daniele Viganò & Davide Fioriti & Davide Poli, 2017. "Energy Production Analysis and Optimization of Mini-Grid in Remote Areas: The Case Study of Habaswein, Kenya," Energies, MDPI, vol. 10(12), pages 1-23, December.
    3. Juanpera, M. & Ferrer-Martí, L. & Pastor, R., 2022. "Multi-stage optimization of rural electrification planning at regional level considering multiple criteria. Case study in Nigeria," Applied Energy, Elsevier, vol. 314(C).
    4. Galleguillos-Pozo, R. & Domenech, B. & Ferrer-Martí, L. & Pastor, R., 2021. "Design of stand-alone electrification systems using fuzzy mathematical programming approaches," Energy, Elsevier, vol. 228(C).
    5. Juanpera, M. & Blechinger, P. & Ferrer-Martí, L. & Hoffmann, M.M. & Pastor, R., 2020. "Multicriteria-based methodology for the design of rural electrification systems. A case study in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    6. Leduchowicz-Municio, A. & López-Gozález, A. & Domenech, B. & Ferrer-Martí, L. & Udaeta, M.E.M. & Gimenes, A.L.V., 2022. "Last-mile rural electrification: Lessons learned from universalization programs in Brazil and Venezuela," Energy Policy, Elsevier, vol. 167(C).
    7. Rosa Galleguillos-Pozo & Bruno Domenech & Laia Ferrer-Martí & Rafael Pastor, 2022. "Balancing Cost and Demand in Electricity Access Projects: Case Studies in Ecuador, Mexico and Peru," Mathematics, MDPI, vol. 10(12), pages 1-19, June.
    8. Tsiaras, Evangelos & Papadopoulos, Demetrios N. & Antonopoulos, Constantinos N. & Papadakis, Vagelis G. & Coutelieris, Frank A., 2020. "Planning and assessment of an off-grid power supply system for small settlements," Renewable Energy, Elsevier, vol. 149(C), pages 1271-1281.
    9. Juanpera, M. & Ferrer-Martí, L. & Diez-Montero, R. & Ferrer, I. & Castro, L. & Escalante, H. & Garfí, M., 2022. "A robust multicriteria analysis for the post-treatment of digestate from low-tech digesters. Boosting the circular bioeconomy of small-scale farms in Colombia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    10. Leary, J. & Czyrnek-Delêtre, M. & Alsop, A. & Eales, A. & Marandin, L. & Org, M. & Craig, M. & Ortiz, W. & Casillas, C. & Persson, J. & Dienst, C. & Brown, E. & While, A. & Cloke, J. & Latoufis, K., 2020. "Finding the niche: A review of market assessment methodologies for rural electrification with small scale wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    11. Brunet, Carole & Savadogo, Oumarou & Baptiste, Pierre & Bouchard, Michel A., 2018. "Shedding some light on photovoltaic solar energy in Africa – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 325-342.
    12. Subhes C. Bhattacharyya, 2018. "Mini-Grids for the Base of the Pyramid Market: A Critical Review," Energies, MDPI, vol. 11(4), pages 1-21, April.
    13. Ferrer-Martí, Laia & Ferrer, Ivet & Sánchez, Elena & Garfí, Marianna, 2018. "A multi-criteria decision support tool for the assessment of household biogas digester programmes in rural areas. A case study in Peru," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 74-83.
    14. Parsa, Navid & Bahmani-Firouzi, Bahman & Niknam, Taher, 2021. "A social-economic-technical framework for reinforcing the automated distribution systems considering optimal switching and plug-in hybrid electric vehicles," Energy, Elsevier, vol. 220(C).
    15. García-Villoria, Alberto & Domenech, Bruno & Ferrer-Martí, Laia & Juanpera, Marc & Pastor, Rafael, 2020. "Ad-hoc heuristic for design of wind-photovoltaic electrification systems, including management constraints," Energy, Elsevier, vol. 212(C).
    16. Marinakis, Vangelis & Doukas, Haris & Xidonas, Panos & Zopounidis, Constantin, 2017. "Multicriteria decision support in local energy planning: An evaluation of alternative scenarios for the Sustainable Energy Action Plan," Omega, Elsevier, vol. 69(C), pages 1-16.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bruno Domenech & Laia Ferrer‐Martí & Rafael Pastor, 2019. "Comparison of various approaches to design wind‐PV rural electrification projects in remote areas of developing countries," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(3), May.
    2. Ferrer-Martí, Laia & Ferrer, Ivet & Sánchez, Elena & Garfí, Marianna, 2018. "A multi-criteria decision support tool for the assessment of household biogas digester programmes in rural areas. A case study in Peru," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 74-83.
    3. Domenech, B. & Ferrer-Martí, L. & Pastor, R., 2015. "Including management and security of supply constraints for designing stand-alone electrification systems in developing countries," Renewable Energy, Elsevier, vol. 80(C), pages 359-369.
    4. B. Domenech & L. Ferrer-Martí & R. Pastor, 2022. "Multicriteria analysis of renewable-based electrification projects in developing countries," Annals of Operations Research, Springer, vol. 312(2), pages 1375-1401, May.
    5. Strantzali, Eleni & Aravossis, Konstantinos, 2016. "Decision making in renewable energy investments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 885-898.
    6. Juanpera, M. & Blechinger, P. & Ferrer-Martí, L. & Hoffmann, M.M. & Pastor, R., 2020. "Multicriteria-based methodology for the design of rural electrification systems. A case study in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    7. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    8. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    9. Siddaiah, Rajanna & Saini, R.P., 2016. "A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 376-396.
    10. Rojas-Zerpa, Juan C. & Yusta, Jose M., 2015. "Application of multicriteria decision methods for electric supply planning in rural and remote areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 557-571.
    11. Ranaboldo, Matteo & Lega, Bruno Domenech & Ferrenbach, David Vilar & Ferrer-Martí, Laia & Moreno, Rafael Pastor & García-Villoria, Alberto, 2014. "Renewable energy projects to electrify rural communities in Cape Verde," Applied Energy, Elsevier, vol. 118(C), pages 280-291.
    12. Ferrer-Martí, L. & Domenech, B. & García-Villoria, A. & Pastor, R., 2013. "A MILP model to design hybrid wind–photovoltaic isolated rural electrification projects in developing countries," European Journal of Operational Research, Elsevier, vol. 226(2), pages 293-300.
    13. Trotter, Philipp A. & McManus, Marcelle C. & Maconachie, Roy, 2017. "Electricity planning and implementation in sub-Saharan Africa: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1189-1209.
    14. Ribó-Pérez, David & Bastida-Molina, Paula & Gómez-Navarro, Tomás & Hurtado-Pérez, Elías, 2020. "Hybrid assessment for a hybrid microgrid: A novel methodology to critically analyse generation technologies for hybrid microgrids," Renewable Energy, Elsevier, vol. 157(C), pages 874-887.
    15. Çelikbilek, Yakup & Tüysüz, Fatih, 2016. "An integrated grey based multi-criteria decision making approach for the evaluation of renewable energy sources," Energy, Elsevier, vol. 115(P1), pages 1246-1258.
    16. Rosso-Cerón, A.M. & Kafarov, V. & Latorre-Bayona, G. & Quijano-Hurtado, R., 2019. "A novel hybrid approach based on fuzzy multi-criteria decision-making tools for assessing sustainable alternatives of power generation in San Andrés Island," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 159-173.
    17. Ranaboldo, Matteo & García-Villoria, Alberto & Ferrer-Martí, Laia & Pastor Moreno, Rafael, 2014. "A heuristic method to design autonomous village electrification projects with renewable energies," Energy, Elsevier, vol. 73(C), pages 96-109.
    18. Fathima, A. Hina & Palanisamy, K., 2015. "Optimization in microgrids with hybrid energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 431-446.
    19. Laia Ferrer-Martí & Rafael Pastor & G. Capó & Enrique Velo, 2011. "Optimizing microwind rural electrification projects. A case study in Peru," Journal of Global Optimization, Springer, vol. 50(1), pages 127-143, May.
    20. Garces, Estefany & Franco, Carlos J. & Tomei, Julia & Dyner, Isaac, 2023. "Sustainable electricity supply for small off-grid communities in Colombia: A system dynamics approach," Energy Policy, Elsevier, vol. 172(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:51:y:2015:i:c:p:182-196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.