[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v192y2022icp759-768.html
   My bibliography  Save this article

Nontraditional sources for biodiesel production in Malaysia: The economic evaluation of hemp, jatropha, and kenaf biodiesel

Author

Listed:
  • Szulczyk, Kenneth R.
  • Badeeb, Ramez Abubakr
Abstract
Three feedstocks, hemp, jatropha, and kenaf, are economically evaluated to produce biodiesel for Malaysia and whether they could improve its sustainability and reduce carbon dioxide emissions in the transportation sector. This study uses a partial equilibrium model, called the Malaysian Agriculture and Plantation Greenhouse Gas Model, to evaluate the potential feedstocks. The model represents the major agricultural commodities of Malaysia and forecasts market prices and quantities between 2024 and 2064. The results show that hemp and kenaf biodiesel can compete with the retail diesel price at the pump. Both hemp and kenaf are sustainable, and these two commodities produce two valuable coproducts: fiber and seed cake. The seed cake helps Malaysia offset some animal feed imports since Malaysia relies on imported feed to support its poultry and cattle industries. Furthermore, hemp and kenaf biodiesel production increases agricultural employment and mitigates some carbon dioxide equivalent emissions in the transportation sector. Jatropha biodiesel is not economically feasible because this commodity produces biodiesel and no valuable coproducts. If jatropha could be genetically altered to make less toxic seed cake or yield other valuable coproducts, then jatropha biodiesel could become economically viable.

Suggested Citation

  • Szulczyk, Kenneth R. & Badeeb, Ramez Abubakr, 2022. "Nontraditional sources for biodiesel production in Malaysia: The economic evaluation of hemp, jatropha, and kenaf biodiesel," Renewable Energy, Elsevier, vol. 192(C), pages 759-768.
  • Handle: RePEc:eee:renene:v:192:y:2022:i:c:p:759-768
    DOI: 10.1016/j.renene.2022.04.097
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122005651
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.04.097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Belachew Cekene Tesfa & Rakesh Mishra & Aliyu M. Aliyu, 2021. "Effect of Biodiesel Blends on the Transient Performance of Compression Ignition Engines," Energies, MDPI, vol. 14(17), pages 1-21, August.
    2. Rincón, L.E. & Jaramillo, J.J. & Cardona, C.A., 2014. "Comparison of feedstocks and technologies for biodiesel production: An environmental and techno-economic evaluation," Renewable Energy, Elsevier, vol. 69(C), pages 479-487.
    3. Olaniyi, Oladokun Nafiu & Szulczyk, Kenneth R., 2020. "Estimating the economic damage and treatment cost of basal stem rot striking the Malaysian oil palms," Forest Policy and Economics, Elsevier, vol. 116(C).
    4. Glisic, Sandra B. & Pajnik, Jelena M. & Orlović, Aleksandar M., 2016. "Process and techno-economic analysis of green diesel production from waste vegetable oil and the comparison with ester type biodiesel production," Applied Energy, Elsevier, vol. 170(C), pages 176-185.
    5. Hassan, Mohd Nor Azman & Jaramillo, Paulina & Griffin, W. Michael, 2011. "Life cycle GHG emissions from Malaysian oil palm bioenergy development: The impact on transportation sector's energy security," Energy Policy, Elsevier, vol. 39(5), pages 2615-2625, May.
    6. Babatunde, Kazeem Alasinrin & Begum, Rawshan Ara & Said, Fathin Faizah, 2017. "Application of computable general equilibrium (CGE) to climate change mitigation policy: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 61-71.
    7. Yang, Cheng-Yuan & Fang, Zhen & Li, Bo & Long, Yun-feng, 2012. "Review and prospects of Jatropha biodiesel industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2178-2190.
    8. Kretschmer, Bettina & Peterson, Sonja, 2010. "Integrating bioenergy into computable general equilibrium models -- A survey," Energy Economics, Elsevier, vol. 32(3), pages 673-686, May.
    9. Szulczyk, Kenneth R. & McCarl, Bruce A., 2010. "Market penetration of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2426-2433, October.
    10. Castiblanco, Carmenza & Moreno, Alvaro & Etter, Andrés, 2015. "Impact of policies and subsidies in agribusiness: The case of oil palm and biofuels in Colombia," Energy Economics, Elsevier, vol. 49(C), pages 676-686.
    11. César, Aldara da Silva & Werderits, Dayana Elizabeth & de Oliveira Saraiva, Gabriela Leal & Guabiroba, Ricardo César da Silva, 2017. "The potential of waste cooking oil as supply for the Brazilian biodiesel chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 246-253.
    12. Baral, Nawa Raj & Neupane, Pratikshya & Ale, Bhakta Bahadur & Quiroz-Arita, Carlos & Manandhar, Shishir & Bradley, Thomas H., 2020. "Stochastic economic and environmental footprints of biodiesel production from Jatropha curcas Linnaeus in the different federal states of Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zamani, Ali Salehi & Saidi, Majid & Najafabadi, Ali Taheri, 2023. "Selective production of diesel-like alkanes via Neem seed oil hydrodeoxygenation over Ni/MgSiO3 catalyst," Renewable Energy, Elsevier, vol. 209(C), pages 462-470.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Szulczyk, Kenneth R. & Ziaei, Sayyed Mahdi & Zhang, Changyong, 2021. "Environmental ramifications and economic viability of bioethanol production in Malaysia," Renewable Energy, Elsevier, vol. 172(C), pages 780-788.
    2. Szulczyk, Kenneth R. & Tan, Yeng-May, 2022. "Economic feasibility and sustainability of commercial bioethanol from microalgal biomass: The case of Malaysia," Energy, Elsevier, vol. 253(C).
    3. Zhang, Long & Bai, Wuliyasu, 2021. "Sustainability of crop–based biodiesel for transportation in China: Barrier analysis and life cycle ecological footprint calculations," Technological Forecasting and Social Change, Elsevier, vol. 164(C).
    4. Tamás Mizik & Gábor Gyarmati, 2021. "Economic and Sustainability of Biodiesel Production—A Systematic Literature Review," Clean Technol., MDPI, vol. 3(1), pages 1-18, January.
    5. Katsuyuki Nakano & Ken Yamagishi, 2021. "Impact of Carbon Tax Increase on Product Prices in Japan," Energies, MDPI, vol. 14(7), pages 1-19, April.
    6. Wongwuttanasatian, Tanakorn & Jookjantra, Kittichai, 2020. "Effect of dual-frequency pulsed ultrasonic excitation and catalyst size for biodiesel production," Renewable Energy, Elsevier, vol. 152(C), pages 1220-1226.
    7. Niu, Tong & Yao, Xilong & Shao, Shuai & Li, Ding & Wang, Wenxi, 2018. "Environmental tax shocks and carbon emissions: An estimated DSGE model," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 9-17.
    8. Monge, Juan J. & Bryant, Henry L. & Gan, Jianbang & Richardson, James W., 2016. "Land use and general equilibrium implications of a forest-based carbon sequestration policy in the United States," Ecological Economics, Elsevier, vol. 127(C), pages 102-120.
    9. Argueyrolles, Robin & Delzeit, Ruth, 2022. "The interconnections between Fossil Fuel Subsidy Reforms and biofuels," Conference papers 333492, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    10. Bu, Yan & Wang, Erda & Möst, Dominik & Lieberwirth, Martin, 2022. "How population migration affects carbon emissions in China: Factual and counterfactual scenario analysis," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    11. Julien Lefevre, 2018. "Modeling the Socioeconomic Impacts of the Adoption of a Carbon Pricing Instrument – Literature review," CIRED Working Papers hal-03128619, HAL.
    12. José Hidalgo-Crespo & César I. Alvarez-Mendoza & Manuel Soto & Jorge Luis Amaya-Rivas, 2022. "Towards a Circular Economy Development for Household Used Cooking Oil in Guayaquil: Quantification, Characterization, Modeling, and Geographical Mapping," Sustainability, MDPI, vol. 14(15), pages 1-19, August.
    13. Bastianin, Andrea & Galeotti, Marzio & Manera, Matteo, 2014. "Causality and predictability in distribution: The ethanol–food price relation revisited," Energy Economics, Elsevier, vol. 42(C), pages 152-160.
    14. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).
    15. Kretschmer, B. & Peterson, S. & Ignaciuk, A., 2010. "Integrating Biofuels into the DART Model: Analysing the Effects of the EU 10% Biofuel Target," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 45, March.
    16. Abdul-Manan, Amir F.N., 2017. "Lifecycle GHG emissions of palm biodiesel: Unintended market effects negate direct benefits of the Malaysian Economic Transformation Plan (ETP)," Energy Policy, Elsevier, vol. 104(C), pages 56-65.
    17. White, Eric M. & Latta, Greg & Alig, Ralph J. & Skog, Kenneth E. & Adams, Darius M., 2013. "Biomass production from the U.S. forest and agriculture sectors in support of a renewable electricity standard," Energy Policy, Elsevier, vol. 58(C), pages 64-74.
    18. Khounani, Zahra & Hosseinzadeh-Bandbafha, Homa & Nizami, Abdul-Sattar & Sulaiman, Alawi & Goli, Sayed Amir Hossein & Tavassoli-Kafrani, Elham & Ghaffari, Akram & Rajaeifar, Mohammad Ali & Kim, Ki-Hyun, 2020. "Unlocking the potential of walnut husk extract in the production of waste cooking oil-based biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    19. Qiu, Cheng & Colson, Gregory & Wetzstein, Michael, 2014. "An ethanol blend wall shift is prone to increase petroleum gasoline demand," Energy Economics, Elsevier, vol. 44(C), pages 160-165.
    20. Li, Wei & Lu, Can & Zhang, Yan-Wu, 2019. "Prospective exploration of future renewable portfolio standard schemes in China via a multi-sector CGE model," Energy Policy, Elsevier, vol. 128(C), pages 45-56.

    More about this item

    Keywords

    Partial equilibrium model; Endogenous price model; Jatropha; Hemp; Kenaf; Biodiesel;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:192:y:2022:i:c:p:759-768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.