[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v120y2018icp190-200.html
   My bibliography  Save this article

Study of inter-correlations of solar radiation, wind speed and precipitation under the influence of El Niño Southern Oscillation (ENSO) in California

Author

Listed:
  • Mohammadi, Kasra
  • Goudarzi, Navid
Abstract
El Niño Southern Oscillation (ENSO) is recognized as an influential climate pattern on meteorological variables such as global solar radiation (H), wind speed (V) and precipitation (P). California as one of the leading States in increasing renewable energy utilization, having established a Renewables Portfolios to meet its electricity demand from renewable energy resources. In this study, long-term 50 years datasets (1961–2010) of eight locations representing different climate conditions of California are utilized. The main objective of this work is to investigate the sensitivity of H, V and P and their variation to El Niño events (very strong and strong El Niño) and La Niña events (strong and moderate La Niño) in different regions of California. The results showed distinct impacts of El Niño and La Niña events on the magnitude and distribution of the studied meteorological variables. The impact of ENSO events on these variables are found to be geographically and seasonally dependent. Furthermore, the degree to which the variables link to ENSO depends on intensity of the events. Overall, the results suggest that ENSO is a potentially useful prognostic tool for California solar and wind energy and hydropower planning for upcoming events.

Suggested Citation

  • Mohammadi, Kasra & Goudarzi, Navid, 2018. "Study of inter-correlations of solar radiation, wind speed and precipitation under the influence of El Niño Southern Oscillation (ENSO) in California," Renewable Energy, Elsevier, vol. 120(C), pages 190-200.
  • Handle: RePEc:eee:renene:v:120:y:2018:i:c:p:190-200
    DOI: 10.1016/j.renene.2017.12.069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117312739
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.12.069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wossenu Abtew & Paul Trimble, 2010. "El Niño–Southern Oscillation Link to South Florida Hydrology and Water Management Applications," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4255-4271, December.
    2. Monforti, F. & Huld, T. & Bódis, K. & Vitali, L. & D'Isidoro, M. & Lacal-Arántegui, R., 2014. "Assessing complementarity of wind and solar resources for energy production in Italy. A Monte Carlo approach," Renewable Energy, Elsevier, vol. 63(C), pages 576-586.
    3. Bett, Philip E. & Thornton, Hazel E., 2016. "The climatological relationships between wind and solar energy supply in Britain," Renewable Energy, Elsevier, vol. 87(P1), pages 96-110.
    4. Coker, Phil & Barlow, Janet & Cockerill, Tim & Shipworth, David, 2013. "Measuring significant variability characteristics: An assessment of three UK renewables," Renewable Energy, Elsevier, vol. 53(C), pages 111-120.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Henao, Felipe & Viteri, Juan P. & Rodríguez, Yeny & Gómez, Juan & Dyner, Isaac, 2020. "Annual and interannual complementarities of renewable energy sources in Colombia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Habte, Aron & Sengupta, Manajit & Gueymard, Christian & Golnas, Anastasios & Xie, Yu, 2020. "Long-term spatial and temporal solar resource variability over America using the NSRDB version 3 (1998–2017)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Gonzalez-Salazar, Miguel & Poganietz, Witold Roger, 2021. "Evaluating the complementarity of solar, wind and hydropower to mitigate the impact of El Niño Southern Oscillation in Latin America," Renewable Energy, Elsevier, vol. 174(C), pages 453-467.
    4. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    5. Bianchi, Emilio & Guozden, Tomás & Kozulj, Roberto, 2022. "Assessing low frequency variations in solar and wind power and their climatic teleconnections," Renewable Energy, Elsevier, vol. 190(C), pages 560-571.
    6. Bracken, Cameron & Voisin, Nathalie & Burleyson, Casey D. & Campbell, Allison M. & Hou, Z. Jason & Broman, Daniel, 2024. "Standardized benchmark of historical compound wind and solar energy droughts across the Continental United States," Renewable Energy, Elsevier, vol. 220(C).
    7. Li, Muyuan & Yao, Jinfeng & Shen, Yanbo & Yuan, Bin & Simmonds, Ian & Liu, Yunyun, 2023. "Impact of synoptic circulation patterns on renewable energy-related variables over China," Renewable Energy, Elsevier, vol. 215(C).
    8. Aliashim Albani & Mohd Zamri Ibrahim & Kim Hwang Yong, 2018. "Influence of the ENSO and Monsoonal Season on Long-Term Wind Energy Potential in Malaysia," Energies, MDPI, vol. 11(11), pages 1-18, November.
    9. Wei, Yu & Zhang, Jiahao & Chen, Yongfei & Wang, Yizhi, 2022. "The impacts of El Niño-southern oscillation on renewable energy stock markets: Evidence from quantile perspective," Energy, Elsevier, vol. 260(C).
    10. He, J.Y. & Chan, P.W. & Li, Q.S. & Tong, H.W., 2023. "Mapping future offshore wind resources in the South China Sea under climate change by regional climate modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    11. Jurasz, Jakub & Dąbek, Paweł B. & Kaźmierczak, Bartosz & Kies, Alexander & Wdowikowski, Marcin, 2018. "Large scale complementary solar and wind energy sources coupled with pumped-storage hydroelectricity for Lower Silesia (Poland)," Energy, Elsevier, vol. 161(C), pages 183-192.
    12. Wei, Yu & Zhang, Jiahao & Bai, Lan & Wang, Yizhi, 2023. "Connectedness among El Niño-Southern Oscillation, carbon emission allowance, crude oil and renewable energy stock markets: Time- and frequency-domain evidence based on TVP-VAR model," Renewable Energy, Elsevier, vol. 202(C), pages 289-309.
    13. Zhang, Jiahao & Zhang, Yifeng & Wei, Yu & Wang, Zhuo, 2024. "Normal and extreme impact and connectedness between fossil energy futures markets and uncertainties: Does El Niño-Southern Oscillation matter?," International Review of Economics & Finance, Elsevier, vol. 89(PB), pages 188-215.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Engeland, Kolbjørn & Borga, Marco & Creutin, Jean-Dominique & François, Baptiste & Ramos, Maria-Helena & Vidal, Jean-Philippe, 2017. "Space-time variability of climate variables and intermittent renewable electricity production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 600-617.
    2. Alexis Tantet & Marc Stéfanon & Philippe Drobinski & Jordi Badosa & Silvia Concettini & Anna Cretì & Claudia D’Ambrosio & Dimitri Thomopulos & Peter Tankov, 2019. "e 4 clim 1.0: The Energy for a Climate Integrated Model: Description and Application to Italy," Energies, MDPI, vol. 12(22), pages 1-37, November.
    3. Sun, Wei & Harrison, Gareth P., 2019. "Wind-solar complementarity and effective use of distribution network capacity," Applied Energy, Elsevier, vol. 247(C), pages 89-101.
    4. Dujardin, Jérôme & Kahl, Annelen & Kruyt, Bert & Bartlett, Stuart & Lehning, Michael, 2017. "Interplay between photovoltaic, wind energy and storage hydropower in a fully renewable Switzerland," Energy, Elsevier, vol. 135(C), pages 513-525.
    5. Ian M. Trotter & Torjus F. Bolkesj{o} & Eirik O. J{aa}stad & Jon Gustav Kirkerud, 2021. "Increased Electrification of Heating and Weather Risk in the Nordic Power System," Papers 2112.02893, arXiv.org.
    6. Pennock, Shona & Coles, Daniel & Angeloudis, Athanasios & Bhattacharya, Saptarshi & Jeffrey, Henry, 2022. "Temporal complementarity of marine renewables with wind and solar generation: Implications for GB system benefits," Applied Energy, Elsevier, vol. 319(C).
    7. Pearre, Nathaniel & Swan, Lukas, 2020. "Reimagining renewable electricity grid management with dispatchable generation to stabilize energy storage," Energy, Elsevier, vol. 203(C).
    8. Widén, Joakim & Carpman, Nicole & Castellucci, Valeria & Lingfors, David & Olauson, Jon & Remouit, Flore & Bergkvist, Mikael & Grabbe, Mårten & Waters, Rafael, 2015. "Variability assessment and forecasting of renewables: A review for solar, wind, wave and tidal resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 356-375.
    9. Berger, Mathias & Radu, David & Fonteneau, Raphaël & Henry, Robin & Glavic, Mevludin & Fettweis, Xavier & Le Du, Marc & Panciatici, Patrick & Balea, Lucian & Ernst, Damien, 2020. "Critical time windows for renewable resource complementarity assessment," Energy, Elsevier, vol. 198(C).
    10. Pedruzzi, Rizzieri & Silva, Allan Rodrigues & Soares dos Santos, Thalyta & Araujo, Allan Cavalcante & Cotta Weyll, Arthur Lúcide & Lago Kitagawa, Yasmin Kaore & Nunes da Silva Ramos, Diogo & Milani de, 2023. "Review of mapping analysis and complementarity between solar and wind energy sources," Energy, Elsevier, vol. 283(C).
    11. Rafael Peña Gallardo & Adalberto Ospino Castro & Aurelio Medina Ríos, 2020. "An Image Processing-Based Method to Assess the Monthly Energetic Complementarity of Solar and Wind Energy in Colombia," Energies, MDPI, vol. 13(5), pages 1-17, February.
    12. Bett, Philip E. & Thornton, Hazel E., 2016. "The climatological relationships between wind and solar energy supply in Britain," Renewable Energy, Elsevier, vol. 87(P1), pages 96-110.
    13. Jurasz, Jakub & Beluco, Alexandre & Canales, Fausto A., 2018. "The impact of complementarity on power supply reliability of small scale hybrid energy systems," Energy, Elsevier, vol. 161(C), pages 737-743.
    14. Aqsa Naeem & Naveed Ul Hassan & Chau Yuen & S. M. Muyeen, 2019. "Maximizing the Economic Benefits of a Grid-Tied Microgrid Using Solar-Wind Complementarity," Energies, MDPI, vol. 12(3), pages 1-22, January.
    15. Pearre, Nathaniel & Adye, Katherine & Swan, Lukas, 2019. "Proportioning wind, solar, and in-stream tidal electricity generating capacity to co-optimize multiple grid integration metrics," Applied Energy, Elsevier, vol. 242(C), pages 69-77.
    16. Bhattacharya, Saptarshi & Pennock, Shona & Robertson, Bryson & Hanif, Sarmad & Alam, Md Jan E. & Bhatnagar, Dhruv & Preziuso, Danielle & O’Neil, Rebecca, 2021. "Timing value of marine renewable energy resources for potential grid applications," Applied Energy, Elsevier, vol. 299(C).
    17. Monforti, F. & Gaetani, M. & Vignati, E., 2016. "How synchronous is wind energy production among European countries?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1622-1638.
    18. Pearre, Nathaniel & Swan, Lukas, 2020. "Combining wind, solar, and in-stream tidal electricity generation with energy storage using a load-perturbation control strategy," Energy, Elsevier, vol. 203(C).
    19. Ingeborg Graabak & Magnus Korpås, 2016. "Variability Characteristics of European Wind and Solar Power Resources—A Review," Energies, MDPI, vol. 9(6), pages 1-31, June.
    20. Santos-Alamillos, F.J. & Pozo-Vázquez, D. & Ruiz-Arias, J.A. & Von Bremen, L. & Tovar-Pescador, J., 2015. "Combining wind farms with concentrating solar plants to provide stable renewable power," Renewable Energy, Elsevier, vol. 76(C), pages 539-550.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:120:y:2018:i:c:p:190-200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.