[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v68y2014icp356-365.html
   My bibliography  Save this article

Optimization of a solar photovoltaic thermal (PV/T) water collector based on exergy concept

Author

Listed:
  • Sobhnamayan, F.
  • Sarhaddi, F.
  • Alavi, M.A.
  • Farahat, S.
  • Yazdanpanahi, J.
Abstract
In this paper, the optimization of a solar photovoltaic thermal (PV/T) water collector which is based on exergy concept is carried out. Considering energy balance for different components of PV/T collector, we can obtain analytical expressions for thermal parameters (i.e. solar cells temperature, outlet water temperature, useful absorbed heat rate, average water temperature, thermal efficiency, etc.). Thermal analysis of PV/T collector depends on electrical analysis of it; therefore, five-parameter current–voltage (I–V) model is used to obtain electrical parameters (i.e. open-circuit voltage, short-circuit current, voltage and current at the point which has maximum electrical power, electrical efficiency, etc.). In order to obtain exergy efficiency of PV/T collector we need exergy analysis as well as energy analysis. Considering exergy balance for different components of PV/T collector, we obtain the expressions which show the exergy of the different parts of PV/T collector. Some corrections have been done on the above expressions in order to obtain a modified equation for the exergy efficiency of PV/T water collector. A computer simulation program has been developed in order to obtain the amount of thermal and electrical parameters. The simulation results are in good agreement with the experimental data of previous literature. Genetic algorithm (GA) has been used to optimize the exergy efficiency of PV/T water collector. Optimum inlet water velocity and pipe diameter are 0.09 m s−1, 4.8 mm, respectively. Maximum exergy efficiency is 11.36%. Finally, some parametric studies have been done in order to find the effect of climatic parameters on exergy efficiency.

Suggested Citation

  • Sobhnamayan, F. & Sarhaddi, F. & Alavi, M.A. & Farahat, S. & Yazdanpanahi, J., 2014. "Optimization of a solar photovoltaic thermal (PV/T) water collector based on exergy concept," Renewable Energy, Elsevier, vol. 68(C), pages 356-365.
  • Handle: RePEc:eee:renene:v:68:y:2014:i:c:p:356-365
    DOI: 10.1016/j.renene.2014.01.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114000780
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.01.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chow, T.T. & Pei, G. & Fong, K.F. & Lin, Z. & Chan, A.L.S. & Ji, J., 2009. "Energy and exergy analysis of photovoltaic-thermal collector with and without glass cover," Applied Energy, Elsevier, vol. 86(3), pages 310-316, March.
    2. Tiwari, Arvind & Dubey, Swapnil & Sandhu, G.S. & Sodha, M.S. & Anwar, S.I., 2009. "Exergy analysis of integrated photovoltaic thermal solar water heater under constant flow rate and constant collection temperature modes," Applied Energy, Elsevier, vol. 86(12), pages 2592-2597, December.
    3. Joshi, Anand S. & Tiwari, Arvind, 2007. "Energy and exergy efficiencies of a hybrid photovoltaic–thermal (PV/T) air collector," Renewable Energy, Elsevier, vol. 32(13), pages 2223-2241.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael, Jee Joe & S, Iniyan & Goic, Ranko, 2015. "Flat plate solar photovoltaic–thermal (PV/T) systems: A reference guide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 62-88.
    2. Bayrak, Fatih & Abu-Hamdeh, Nidal & Alnefaie, Khaled A. & Öztop, Hakan F., 2017. "A review on exergy analysis of solar electricity production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 755-770.
    3. Das, Dudul & Kalita, Pankaj & Roy, Omkar, 2018. "Flat plate hybrid photovoltaic- thermal (PV/T) system: A review on design and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 111-130.
    4. Chow, T.T., 2010. "A review on photovoltaic/thermal hybrid solar technology," Applied Energy, Elsevier, vol. 87(2), pages 365-379, February.
    5. Yazdanifard, Farideh & Ameri, Mehran, 2018. "Exergetic advancement of photovoltaic/thermal systems (PV/T): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 529-553.
    6. Li, Zhenpeng & Ma, Tao & Zhao, Jiaxin & Song, Aotian & Cheng, Yuanda, 2019. "Experimental study and performance analysis on solar photovoltaic panel integrated with phase change material," Energy, Elsevier, vol. 178(C), pages 471-486.
    7. Al-Shamani, Ali Najah & Yazdi, Mohammad H. & Alghoul, M.A. & Abed, Azher M. & Ruslan, M.H. & Mat, Sohif & Sopian, K., 2014. "Nanofluids for improved efficiency in cooling solar collectors – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 348-367.
    8. Ooshaksaraei, Poorya & Sopian, Kamaruzzaman & Zaidi, Saleem H. & Zulkifli, Rozli, 2017. "Performance of four air-based photovoltaic thermal collectors configurations with bifacial solar cells," Renewable Energy, Elsevier, vol. 102(PB), pages 279-293.
    9. Ceylin Şirin & Fatih Selimefendigil & Hakan Fehmi Öztop, 2023. "Performance Analysis and Identification of an Indirect Photovoltaic Thermal Dryer with Aluminum Oxide Nano-Embedded Thermal Energy Storage Modification," Sustainability, MDPI, vol. 15(3), pages 1-27, January.
    10. Hasan, M. Arif & Sumathy, K., 2010. "Photovoltaic thermal module concepts and their performance analysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1845-1859, September.
    11. Sarhaddi, F. & Farahat, S. & Ajam, H. & Behzadmehr, A. & Mahdavi Adeli, M., 2010. "An improved thermal and electrical model for a solar photovoltaic thermal (PV/T) air collector," Applied Energy, Elsevier, vol. 87(7), pages 2328-2339, July.
    12. Jarimi, Hasila & Abu Bakar, Mohd Nazari & Othman, Mahmod & Din, Mahadzir Hj, 2016. "Bi-fluid photovoltaic/thermal (PV/T) solar collector: Experimental validation of a 2-D theoretical model," Renewable Energy, Elsevier, vol. 85(C), pages 1052-1067.
    13. Daghigh, R. & Ruslan, M.H. & Sopian, K., 2011. "Advances in liquid based photovoltaic/thermal (PV/T) collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4156-4170.
    14. Li, Wenjia & Hao, Yong, 2017. "Efficient solar power generation combining photovoltaics and mid-/low-temperature methanol thermochemistry," Applied Energy, Elsevier, vol. 202(C), pages 377-385.
    15. Jarimi, Hasila & Al-Waeli, Ali H.A. & Razak, Tajul Rosli & Abu Bakar, Mohd Nazari & Fazlizan, Ahmad & Ibrahim, Adnan & Sopian, Kamaruzzaman, 2022. "Neural network modelling and performance estimation of dual-fluid photovoltaic thermal solar collectors in tropical climate conditions," Renewable Energy, Elsevier, vol. 197(C), pages 1009-1019.
    16. Saadon, Syamimi & Gaillard, Leon & Menezo, Christophe & Giroux-Julien, Stéphanie, 2020. "Exergy, exergoeconomic and enviroeconomic analysis of a building integrated semi-transparent photovoltaic/thermal (BISTPV/T) by natural ventilation," Renewable Energy, Elsevier, vol. 150(C), pages 981-989.
    17. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    18. Tiwari, G.N. & Mishra, R.K. & Solanki, S.C., 2011. "Photovoltaic modules and their applications: A review on thermal modelling," Applied Energy, Elsevier, vol. 88(7), pages 2287-2304, July.
    19. Sathe, Tushar M. & Dhoble, A.S., 2017. "A review on recent advancements in photovoltaic thermal techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 645-672.
    20. Shahsavar, Amin & Alwaeli, Ali H.A. & Azimi, Neda & Rostami, Shirin & Sopian, Kamaruzzaman & Arıcı, Müslüm & Estellé, Patrice & Nižetić, Sandro & Kasaeian, Alibakhsh & Ali, Hafiz Muhammad & Ma, Zhenju, 2022. "Exergy studies in water-based and nanofluid-based photovoltaic/thermal collectors: Status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:68:y:2014:i:c:p:356-365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.