[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v230y2023ics0951832022005154.html
   My bibliography  Save this article

Physics-informed machine learning for reliability and systems safety applications: State of the art and challenges

Author

Listed:
  • Xu, Yanwen
  • Kohtz, Sara
  • Boakye, Jessica
  • Gardoni, Paolo
  • Wang, Pingfeng
Abstract
The computerized simulations of physical and socio-economic systems have proliferated in the past decade, at the same time, the capability to develop high-fidelity system predictive models is of growing importance for a multitude of reliability and system safety applications. Traditionally, methodologies for predictive modeling generally fall into two different categories, namely physics-based approaches and machine learning-based approaches. There is a growing consensus that the modeling of complex engineering systems requires novel hybrid methodologies that effectively integrate physics-based modeling with machine learning approaches, referred to as physics-informed machine learning (PIML). Developing advanced PIML techniques is recognized as an important emerging area of research, which could be particularly beneficial in addressing reliability and system safety challenges. With this motivation, this paper provides a review of the state-of-the-art of physics-informed machine learning methods in reliability and system safety applications. The paper highlights different efforts towards aggregating physical information and data-driven models as grouped according to their similarity and application area within each group. The goal is to provide a collection of research articles presenting recent developments of this emergent topic, and shed light on the challenges and future directions which we, as a research community, should focus on for harnessing the full potential of advanced PIML techniques for reliability and safety applications.

Suggested Citation

  • Xu, Yanwen & Kohtz, Sara & Boakye, Jessica & Gardoni, Paolo & Wang, Pingfeng, 2023. "Physics-informed machine learning for reliability and systems safety applications: State of the art and challenges," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
  • Handle: RePEc:eee:reensy:v:230:y:2023:i:c:s0951832022005154
    DOI: 10.1016/j.ress.2022.108900
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022005154
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108900?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Jian & (Steven) Li, Zhaojun & (Judy) Jin, Jionghua, 2018. "System reliability assessment with multilevel information using the Bayesian melding method," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 146-158.
    2. Li, Rui & Verhagen, Wim J.C. & Curran, Richard, 2020. "A systematic methodology for Prognostic and Health Management system architecture definition," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    3. Patrick A. K. Reinbold & Logan M. Kageorge & Michael F. Schatz & Roman O. Grigoriev, 2021. "Robust learning from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic regression," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    4. Zang, Yu & Shangguan, Wei & Cai, Baigen & Wang, Huasheng & Pecht, Michael. G., 2021. "Hybrid remaining useful life prediction method. A case study on railway D-cables," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    5. Chao Hu & Byeng D. Youn & Pingfeng Wang, 2019. "Engineering Design under Uncertainty and Health Prognostics," Springer Series in Reliability Engineering, Springer, number 978-3-319-92574-5, February.
    6. Zio, Enrico, 2022. "Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    7. Hu, Zhen & Mahadevan, Sankaran, 2019. "Probability models for data-Driven global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 40-57.
    8. Tabandeh, Armin & Sharma, Neetesh & Gardoni, Paolo, 2022. "Uncertainty propagation in risk and resilience analysis of hierarchical systems," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    9. Wang, Yuhao & Pang, Yutian & Chen, Oliver & Iyer, Hari N. & Dutta, Parikshit & Menon, P.K. & Liu, Yongming, 2021. "Uncertainty quantification and reduction in aircraft trajectory prediction using Bayesian-Entropy information fusion," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    10. Pence, Justin & Sakurahara, Tatsuya & Zhu, Xuefeng & Mohaghegh, Zahra & Ertem, Mehmet & Ostroff, Cheri & Kee, Ernie, 2019. "Data-theoretic methodology and computational platform to quantify organizational factors in socio-technical risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 240-260.
    11. Vega, Manuel A. & Hu, Zhen & Fillmore, Travis B. & Smith, Matthew D. & Todd, Michael D., 2021. "A Novel Framework for Integration of Abstracted Inspection Data and Structural Health Monitoring for Damage Prognosis of Miter Gates," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    12. Perrin, G., 2016. "Active learning surrogate models for the conception of systems with multiple failure modes," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 130-136.
    13. Qian, Gengjian & Massenzio, Michel & Brizard, Denis & Ichchou, Mohamed, 2019. "Sensitivity analysis of complex engineering systems: Approaches study and their application to vehicle restraint system crash simulation," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 110-118.
    14. Vega, Manuel A. & Hu, Zhen & Todd, Michael D., 2020. "Optimal maintenance decisions for deteriorating quoin blocks in miter gates subject to uncertainty in the condition rating protocol," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    15. Kim, Yochan & Park, Jinkyun, 2019. "Incorporating prior knowledge with simulation data to estimate PSF multipliers using Bayesian logistic regression," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 210-217.
    16. Sohoin, Rodrigue & El Hami, Abdelkhalak & Guerin, Fabrice & Riahi, Hassen & Attaf, Djelali, 2021. "A novel approach based on meta-modeling technique and time transformation function for reliability analysis of upgraded automotive components," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    17. Kapusuzoglu, Berkcan & Mahadevan, Sankaran, 2021. "Information fusion and machine learning for sensitivity analysis using physics knowledge and experimental data," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    18. Chang, Yang & Fang, Huajing, 2019. "A hybrid prognostic method for system degradation based on particle filter and relevance vector machine," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 51-63.
    19. Cai, Wei & Zhao, Jingyi & Zhu, Ming, 2020. "A real time methodology of cluster-system theory-based reliability estimation using k-means clustering," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    20. Li, Zhixiong & Wu, Dazhong & Hu, Chao & Terpenny, Janis, 2019. "An ensemble learning-based prognostic approach with degradation-dependent weights for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 110-122.
    21. Sivarajah, Uthayasankar & Kamal, Muhammad Mustafa & Irani, Zahir & Weerakkody, Vishanth, 2017. "Critical analysis of Big Data challenges and analytical methods," Journal of Business Research, Elsevier, vol. 70(C), pages 263-286.
    22. Yang, Xue & Ramezani, Ramin & Utne, Ingrid Bouwer & Mosleh, Ali & Lader, PÃ¥l Furset, 2020. "Operational limits for aquaculture operations from a risk and safety perspective," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    23. Sakurahara, Tatsuya & Schumock, Grant & Reihani, Seyed & Kee, Ernie & Mohaghegh, Zahra, 2019. "Simulation-Informed Probabilistic Methodology for Common Cause Failure Analysis," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 84-99.
    24. Chao Hu & Byeng D. Youn & Pingfeng Wang, 2019. "Case Studies: Prognostics and Health Management (PHM)," Springer Series in Reliability Engineering, in: Engineering Design under Uncertainty and Health Prognostics, chapter 0, pages 303-342, Springer.
    25. Ray, Douglas & Ramirez-Marquez, Jose, 2020. "A framework for probabilistic model-based engineering and data synthesis," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    26. Arias Chao, Manuel & Kulkarni, Chetan & Goebel, Kai & Fink, Olga, 2022. "Fusing physics-based and deep learning models for prognostics," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    27. Blancke, Olivier & Tahan, Antoine & Komljenovic, Dragan & Amyot, Normand & Lévesque, Mélanie & Hudon, Claude, 2018. "A holistic multi-failure mode prognosis approach for complex equipment," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 136-151.
    28. John H Lagergren & John T Nardini & Ruth E Baker & Matthew J Simpson & Kevin B Flores, 2020. "Biologically-informed neural networks guide mechanistic modeling from sparse experimental data," PLOS Computational Biology, Public Library of Science, vol. 16(12), pages 1-29, December.
    29. Prakash, Om & Samantaray, Arun Kumar, 2021. "Prognosis of Dynamical System Components with Varying Degradation Patterns using model–data–fusion," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    30. Zhu, Shun-Peng & Huang, Hong-Zhong & Peng, Weiwen & Wang, Hai-Kun & Mahadevan, Sankaran, 2016. "Probabilistic Physics of Failure-based framework for fatigue life prediction of aircraft gas turbine discs under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 146(C), pages 1-12.
    31. Wang, Wei & Maio, Francesco Di & Zio, Enrico, 2017. "Three-loop Monte Carlo simulation approach to Multi-State Physics Modeling for system reliability assessment," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 276-289.
    32. Wang, Yuhao & Gao, Yi & Liu, Yongming & Ghosh, Sayan & Subber, Waad & Pandita, Piyush & Wang, Liping, 2021. "Bayesian-entropy gaussian process for constrained metamodeling," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    33. Li, Meng & Sadoughi, Mohammadkazem & Hu, Zhen & Hu, Chao, 2020. "A hybrid Gaussian process model for system reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    34. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    35. Shi, Lei & Lin, Shih-Po, 2016. "A new RBDO method using adaptive response surface and first-order score function for crashworthiness design," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 125-133.
    36. Abrishami, Shokoufeh & Khakzad, Nima & Hosseini, Seyed Mahmoud, 2020. "A data-based comparison of BN-HRA models in assessing human error probability: An offshore evacuation case study," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    37. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    38. Bourinet, J.-M., 2016. "Rare-event probability estimation with adaptive support vector regression surrogates," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 210-221.
    39. Sakurahara, Tatsuya & O'Shea, Nicholas & Cheng, Wen-Chi & Zhang, Sai & Reihani, Seyed & Kee, Ernie & Mohaghegh, Zahra, 2019. "Integrating renewal process modeling with Probabilistic Physics-of-Failure: Application to Loss of Coolant Accident (LOCA) frequency estimations in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    40. Wu, Ji-Peng & Kang, Rui & Li, Xiao-Yang, 2020. "Uncertain accelerated degradation modeling and analysis considering epistemic uncertainties in time and unit dimension," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    41. Zywiec, William J. & Mazzuchi, Thomas A. & Sarkani, Shahram, 2021. "Analysis of process criticality accident risk using a metamodel-driven Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    42. Paolo Gardoni, 2017. "Risk and Reliability Analysis," Springer Series in Reliability Engineering, in: Paolo Gardoni (ed.), Risk and Reliability Analysis: Theory and Applications, pages 3-24, Springer.
    43. Li, Sai & Fang, Huajing & Shi, Bing, 2021. "Remaining useful life estimation of Lithium-ion battery based on interacting multiple model particle filter and support vector regression," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    44. Schöbi, Roland & Sudret, Bruno, 2019. "Global sensitivity analysis in the context of imprecise probabilities (p-boxes) using sparse polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 129-141.
    45. Guo, Jingbo & Wang, Changxi & Cabrera, Javier & Elsayed, Elsayed A., 2018. "Improved inverse Gaussian process and bootstrap: Degradation and reliability metrics," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 269-277.
    46. Moradi, Ramin & Groth, Katrina M., 2020. "Modernizing risk assessment: A systematic integration of PRA and PHM techniques," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    47. Liu, Di & Wang, Shaoping, 2020. "A degradation modeling and reliability estimation method based on Wiener process and evidential variable," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    48. Downey, Austin & Lui, Yu-Hui & Hu, Chao & Laflamme, Simon & Hu, Shan, 2019. "Physics-based prognostics of lithium-ion battery using non-linear least squares with dynamic bounds," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 1-12.
    49. Iamsumang, Chonlagarn & Mosleh, Ali & Modarres, Mohammad, 2018. "Monitoring and learning algorithms for dynamic hybrid Bayesian network in on-line system health management applications," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 118-129.
    50. Pan, Yan & Jing, Yunteng & Wu, Tonghai & Kong, Xiangxing, 2021. "An Integrated Data and Knowledge Model Addressing Aleatory and Epistemic Uncertainty for Oil Condition Monitoring," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    51. Iooss, Bertrand & Ribatet, Mathieu, 2009. "Global sensitivity analysis of computer models with functional inputs," Reliability Engineering and System Safety, Elsevier, vol. 94(7), pages 1194-1204.
    52. Groth, Katrina M. & Smith, Reuel & Moradi, Ramin, 2019. "A hybrid algorithm for developing third generation HRA methods using simulator data, causal models, and cognitive science," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    53. Santhosh, T.V. & Gopika, V. & Ghosh, A.K. & Fernandes, B.G., 2018. "An approach for reliability prediction of instrumentation & control cables by artificial neural networks and Weibull theory for probabilistic safety assessment of NPPs," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 31-44.
    54. Baptista, Marcia & Henriques, Elsa M.P. & de Medeiros, Ivo P. & Malere, Joao P. & Nascimento, Cairo L. & Prendinger, Helmut, 2019. "Remaining useful life estimation in aeronautics: Combining data-driven and Kalman filtering," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 228-239.
    55. Tan, Zhixue & Zhong, Shisheng & Lin, Lin, 2019. "Trans-layer model learning: A hierarchical modeling strategy for real-time reliability evaluation of complex systems," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 120-132.
    56. Xie, Chaoyang & Li, Guijie & Wei, Fayuan, 2018. "An integrated QMU approach to structural reliability assessment based on evidence theory and kriging model with adaptive sampling," Reliability Engineering and System Safety, Elsevier, vol. 171(C), pages 112-122.
    57. Jain, Amit Kumar & Lad, Bhupesh Kumar, 2020. "Prognosticating RULs while exploiting the future characteristics of operating profiles," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    58. Jiang, Chen & Vega, Manuel A. & Todd, Michael D. & Hu, Zhen, 2022. "Model correction and updating of a stochastic degradation model for failure prognostics of miter gates," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    59. Chiachío, Juan & Chiachío, Manuel & Prescott, Darren & Andrews, John, 2019. "A knowledge-based prognostics framework for railway track geometry degradation," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 127-141.
    60. Qian, Hua-Ming & Li, Yan-Feng & Huang, Hong-Zhong, 2020. "Time-variant reliability analysis for industrial robot RV reducer under multiple failure modes using Kriging model," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    61. Whiteley, M & Dunnett, S & Jackson, L, 2020. "Simulation of polymer electrolyte membrane fuel cell degradation using an integrated Petri Net and 0D model," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    62. Sun, Xuxue & Mraied, Hesham & Cai, Wenjun & Zhang, Qiong & Liang, Guoyuan & Li, Mingyang, 2018. "Bayesian latent degradation performance modeling and quantification of corroding aluminum alloys," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 84-96.
    63. Bai, Guangxing & Wang, Pingfeng & Hu, Chao & Pecht, Michael, 2014. "A generic model-free approach for lithium-ion battery health management," Applied Energy, Elsevier, vol. 135(C), pages 247-260.
    64. MacKenzie, Cameron A. & Hu, Chao, 2019. "Decision making under uncertainty for design of resilient engineered systems," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    65. Gatelli, D. & Kucherenko, S. & Ratto, M. & Tarantola, S., 2009. "Calculating first-order sensitivity measures: A benchmark of some recent methodologies," Reliability Engineering and System Safety, Elsevier, vol. 94(7), pages 1212-1219.
    66. Veiga, Sébastien Da & Marrel, Amandine, 2020. "Gaussian process regression with linear inequality constraints," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    67. Favarò, Francesca M. & Saleh, Joseph H., 2018. "Application of temporal logic for safety supervisory control and model-based hazard monitoring," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 166-178.
    68. Vasilyev, A. & Andrews, J. & Dunnett, S.J. & Jackson, L.M., 2021. "Dynamic Reliability Assessment of PEM Fuel Cell Systems," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    69. Hu, Chao & Youn, Byeng D. & Wang, Pingfeng & Taek Yoon, Joung, 2012. "Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 120-135.
    70. Chahrour, Nour & Nasr, Mohamad & Tacnet, Jean-Marc & Bérenguer, Christophe, 2021. "Deterioration modeling and maintenance assessment using physics-informed stochastic Petri nets: Application to torrent protection structures," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    71. Tamilselvan, Prasanna & Wang, Pingfeng, 2013. "Failure diagnosis using deep belief learning based health state classification," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 124-135.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Braga, Joaquim A.P. & Costa, João N. & Ambrósio, Jorge & Frey, Daniel & Andrade, António R., 2024. "Robust assessment of railway vehicle safety risks in operation using a proposed data-driven wheel profile generation approach: Design of computer experiments and surrogate models," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    2. Wang, Haijie & Li, Bo & Lei, Liming & Xuan, Fuzhen, 2024. "Uncertainty-aware fatigue-life prediction of additively manufactured Hastelloy X superalloy using a physics-informed probabilistic neural network," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    3. Alsulieman, Abdullah & Ge, Xihe & Zeng, Zhiguo & Butenko, Sergiy & Khan, Faisal & El-Halwagi, Mahmoud, 2024. "Dynamic risk analysis of evolving scenarios in oil and gas separator," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    4. Yang, Shilong & Tang, Baoping & Wang, Weiying & Yang, Qichao & Hu, Cheng, 2024. "Physics-informed multi-state temporal frequency network for RUL prediction of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    5. Zhang, Jiusi & Tian, Jilun & Yan, Pengfei & Wu, Shimeng & Luo, Hao & Yin, Shen, 2024. "Multi-hop graph pooling adversarial network for cross-domain remaining useful life prediction: A distributed federated learning perspective," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    6. Pan, Yue & Qin, Jianjun & Hou, Yongmao & Chen, Jin-Jian, 2024. "Two-stage support vector machine-enabled deep excavation settlement prediction considering class imbalance and multi-source uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    7. Oster, Matthew R. & King, Ethan & Bakker, Craig & Bhattacharya, Arnab & Chatterjee, Samrat & Pan, Feng, 2023. "Multi-level optimization with the koopman operator for data-driven, domain-aware, and dynamic system security," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    8. Song, Chaolin & Xiao, Rucheng & Zhang, Chi & Zhao, Xinwei & Sun, Bo, 2024. "Simulation-free reliability analysis with importance sampling-based adaptive training physics-informed neural networks: Method and application to chloride penetration," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    9. Phan, Hieu Chi & Dhar, Ashutosh Sutra & Bui, Nang Duc, 2023. "Reliability assessment of pipelines crossing strike-slip faults considering modeling uncertainties using ANN models," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    10. Qin, Zhiyuan & Naser, M.Z., 2023. "Machine learning and model driven bayesian uncertainty quantification in suspended nonstructural systems," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    11. Zhang, Ruixing & An, Liqiang & He, Lun & Yang, Xinmeng & Huang, Zenghao, 2024. "Reliability analysis and inverse optimization method for floating wind turbines driven by dual meta-models combining transient-steady responses," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    12. Martón, I. & Sánchez, A.I. & Carlos, S. & Mullor, R. & Martorell, S., 2023. "Prognosis of wear-out effect on of safety equipment reliability for nuclear power plants long-term safe operation," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    13. Hughes, William & Watson, Peter L. & Cerrai, Diego & Zhang, Xinxuan & Bagtzoglou, Amvrossios & Zhang, Wei & Anagnostou, Emmanouil, 2024. "Assessing grid hardening strategies to improve power system performance during storms using a hybrid mechanistic-machine learning outage prediction model," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    14. Zhao, Zilong & Lv, Guoquan & Xu, Yanwen & Lin, Yu-Feng & Wang, Pingfeng & Wang, Xinlei, 2024. "Enhancing ground source heat pump system design optimization: A stochastic model incorporating transient geological factors and decision variables," Renewable Energy, Elsevier, vol. 225(C).
    15. Abaei, Mohammad Mahdi & Leira, Bernt Johan & Sævik, Svein & BahooToroody, Ahmad, 2024. "Integrating physics-based simulations with gaussian processes for enhanced safety assessment of offshore installations," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    16. Park, Hyung Jun & Kim, Nam H. & Choi, Joo-Ho, 2024. "A robust health prediction using Bayesian approach guided by physical constraints," Reliability Engineering and System Safety, Elsevier, vol. 244(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lewis, Austin D. & Groth, Katrina M., 2022. "Metrics for evaluating the performance of complex engineering system health monitoring models," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    2. Bai, Guangxing & Su, Yunsheng & Rahman, Maliha Maisha & Wang, Zequn, 2023. "Prognostics of Lithium-Ion batteries using knowledge-constrained machine learning and Kalman filtering," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    3. Moradi, Ramin & Cofre-Martel, Sergio & Lopez Droguett, Enrique & Modarres, Mohammad & Groth, Katrina M., 2022. "Integration of deep learning and Bayesian networks for condition and operation risk monitoring of complex engineering systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    4. Vrignat, Pascal & Kratz, Frédéric & Avila, Manuel, 2022. "Sustainable manufacturing, maintenance policies, prognostics and health management: A literature review," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    5. Wang, Run-Zi & Gu, Hang-Hang & Zhu, Shun-Peng & Li, Kai-Shang & Wang, Ji & Wang, Xiao-Wei & Hideo, Miura & Zhang, Xian-Cheng & Tu, Shan-Tung, 2022. "A data-driven roadmap for creep-fatigue reliability assessment and its implementation in low-pressure turbine disk at elevated temperatures," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    6. Liu, Xinyang & Zheng, Zhuoyuan & Büyüktahtakın, İ. Esra & Zhou, Zhi & Wang, Pingfeng, 2021. "Battery asset management with cycle life prognosis," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    7. Wang, Yuan & Lei, Yaguo & Li, Naipeng & Yan, Tao & Si, Xiaosheng, 2023. "Deep multisource parallel bilinear-fusion network for remaining useful life prediction of machinery," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    8. Zio, Enrico, 2022. "Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    9. Prakash, Om & Samantaray, Arun Kumar, 2021. "Prognosis of Dynamical System Components with Varying Degradation Patterns using model–data–fusion," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    10. Hachem, Hassan & Vu, Hai Canh & Fouladirad, Mitra, 2024. "Different methods for RUL prediction considering sensor degradation," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    11. Aizpurua, J.I. & Stewart, B.G. & McArthur, S.D.J. & Penalba, M. & Barrenetxea, M. & Muxika, E. & Ringwood, J.V., 2022. "Probabilistic forecasting informed failure prognostics framework for improved RUL prediction under uncertainty: A transformer case study," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    12. Ma, Zhonghai & Liao, Haitao & Gao, Jianhang & Nie, Songlin & Geng, Yugang, 2023. "Physics-Informed Machine Learning for Degradation Modeling of an Electro-Hydrostatic Actuator System," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    13. Cao, Mengda & Zhang, Tao & Liu, Yajie & Zhang, Yajun & Wang, Yu & Li, Kaiwen, 2022. "An ensemble learning prognostic method for capacity estimation of lithium-ion batteries based on the V-IOWGA operator," Energy, Elsevier, vol. 257(C).
    14. Gaspar, B. & Teixeira, A.P. & Guedes Soares, C., 2017. "Adaptive surrogate model with active refinement combining Kriging and a trust region method," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 277-291.
    15. Zheng, Shuwen & Wang, Chong & Zio, Enrico & Liu, Jie, 2024. "Fault detection in complex mechatronic systems by a hierarchical graph convolution attention network based on causal paths," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    16. Lyu, Dongzhen & Niu, Guangxing & Liu, Enhui & Zhang, Bin & Chen, Gang & Yang, Tao & Zio, Enrico, 2022. "Time space modelling for fault diagnosis and prognosis with uncertainty management: A general theoretical formulation," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    17. Zou, Xinyu & Tao, Laifa & Sun, Lulu & Wang, Chao & Ma, Jian & Lu, Chen, 2023. "A case-learning-based paradigm for quantitative recommendation of fault diagnosis algorithms: A case study of gearbox," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    18. Xiao, Dasheng & Lin, Zhifu & Yu, Aiyang & Tang, Ke & Xiao, Hong, 2024. "Data-driven method embedded physical knowledge for entire lifecycle degradation monitoring in aircraft engines," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    19. Wei, Pengfei & Liu, Fuchao & Tang, Chenghu, 2018. "Reliability and reliability-based importance analysis of structural systems using multiple response Gaussian process model," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 183-195.
    20. Gjorgiev, Blazhe & Das, Laya & Merkel, Seline & Rohrer, Martina & Auger, Etienne & Sansavini, Giovanni, 2023. "Simulation-driven deep learning for locating faulty insulators in a power line," Reliability Engineering and System Safety, Elsevier, vol. 231(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:230:y:2023:i:c:s0951832022005154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.