[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v93y2008i11p1605-1615.html
   My bibliography  Save this article

Reliability importance analysis of Markovian systems at steady state using perturbation analysis

Author

Listed:
  • Do Van, Phuc
  • Barros, Anne
  • Bérenguer, Christophe
Abstract
Sensitivity analysis has been primarily defined for static systems, i.e. systems described by combinatorial reliability models (fault or event trees). Several structural and probabilistic measures have been proposed to assess the components importance. For dynamic systems including inter-component and functional dependencies (cold spare, shared load, shared resources, etc.), and described by Markov models or, more generally, by discrete events dynamic systems models, the problem of sensitivity analysis remains widely open. In this paper, the perturbation method is used to estimate an importance factor, called multi-directional sensitivity measure, in the framework of Markovian systems. Some numerical examples are introduced to show why this method offers a promising tool for steady-state sensitivity analysis of Markov processes in reliability studies.

Suggested Citation

  • Do Van, Phuc & Barros, Anne & Bérenguer, Christophe, 2008. "Reliability importance analysis of Markovian systems at steady state using perturbation analysis," Reliability Engineering and System Safety, Elsevier, vol. 93(11), pages 1605-1615.
  • Handle: RePEc:eee:reensy:v:93:y:2008:i:11:p:1605-1615
    DOI: 10.1016/j.ress.2008.02.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832008000422
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2008.02.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul Glasserman & Sridhar Tayur, 1995. "Sensitivity Analysis for Base-Stock Levels in Multiechelon Production-Inventory Systems," Management Science, INFORMS, vol. 41(2), pages 263-281, February.
    2. Paul Glasserman, 1992. "Derivative Estimates from Simulation of Continuous-Time Markov Chains," Operations Research, INFORMS, vol. 40(2), pages 292-308, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Do, Phuc & Bérenguer, Christophe, 2020. "Conditional reliability-based importance measures," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    2. Shumin Li & Shubin Si & Liudong Xing & Shudong Sun, 2014. "Integrated importance of multi-state fault tree based on multi-state multi-valued decision diagram," Journal of Risk and Reliability, , vol. 228(2), pages 200-208, April.
    3. Zhu, Xiaoyan & Boushaba, Mahmoud & Coit, David W. & Benyahia, Azzeddine, 2017. "Reliability and importance measures for m-consecutive-k, l-out-of-n system with non-homogeneous Markov-dependent components," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 1-9.
    4. Xiaoyan Zhu & Way Kuo, 2014. "Importance measures in reliability and mathematical programming," Annals of Operations Research, Springer, vol. 212(1), pages 241-267, January.
    5. Rocco S., Claudio M. & Emmanuel Ramirez-Marquez, José, 2015. "Assessment of the transition-rates importance of Markovian systems at steady state using the unscented transformation," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 212-220.
    6. Borgonovo, E., 2010. "The reliability importance of components and prime implicants in coherent and non-coherent systems including total-order interactions," European Journal of Operational Research, Elsevier, vol. 204(3), pages 485-495, August.
    7. E. Borgonovo & C. L. Smith, 2011. "A Study of Interactions in the Risk Assessment of Complex Engineering Systems: An Application to Space PSA," Operations Research, INFORMS, vol. 59(6), pages 1461-1476, December.
    8. C M Rocco S, 2012. "Effects of the transition rate uncertainty on the steady state probabilities of Markov models using interval arithmetic," Journal of Risk and Reliability, , vol. 226(2), pages 234-245, April.
    9. Aizpurua, J.I. & Catterson, V.M. & Papadopoulos, Y. & Chiacchio, F. & D'Urso, D., 2017. "Supporting group maintenance through prognostics-enhanced dynamic dependability prediction," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 171-188.
    10. P Do Van & A Barros & C Berenguer, 2008. "Importance measure on finite time horizon and application to Markovian multistate production systems," Journal of Risk and Reliability, , vol. 222(3), pages 449-461, September.
    11. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    12. Zhai, Qingqing & Yang, Jun & Xie, Min & Zhao, Yu, 2014. "Generalized moment-independent importance measures based on Minkowski distance," European Journal of Operational Research, Elsevier, vol. 239(2), pages 449-455.
    13. Do Van, Phuc & Barros, Anne & Bérenguer, Christophe, 2010. "From differential to difference importance measures for Markov reliability models," European Journal of Operational Research, Elsevier, vol. 204(3), pages 513-521, August.
    14. Claudio M Rocco S, 2013. "Affine arithmetic for assessing the uncertainty propagation on steady-state probabilities of Markov models owing to uncertainties in transition rates," Journal of Risk and Reliability, , vol. 227(5), pages 523-533, October.
    15. Tyrväinen, T., 2013. "Risk importance measures in the dynamic flowgraph methodology," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 35-50.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ozdemir, Deniz & Yucesan, Enver & Herer, Yale T., 2006. "Multi-location transshipment problem with capacitated transportation," European Journal of Operational Research, Elsevier, vol. 175(1), pages 602-621, November.
    2. Gong, Y. & Yucesan, E., 2006. "The Multi-Location Transshipment Problem with Positive Replenishment Lead Times," ERIM Report Series Research in Management ERS-2006-048-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    3. Özdemir, Deniz & Yücesan, Enver & Herer, Yale T., 2013. "Multi-location transshipment problem with capacitated production," European Journal of Operational Research, Elsevier, vol. 226(3), pages 425-435.
    4. Jan A. Van Mieghem & Nils Rudi, 2002. "Newsvendor Networks: Inventory Management and Capacity Investment with Discretionary Activities," Manufacturing & Service Operations Management, INFORMS, vol. 4(4), pages 313-335, August.
    5. Woonghee Tim Huh & Mahesh Nagarajan, 2010. "Technical note ---Linear Inflation Rules for the Random Yield Problem: Analysis and Computations," Operations Research, INFORMS, vol. 58(1), pages 244-251, February.
    6. Schwartz, Jay D. & Rivera, Daniel E., 2010. "A process control approach to tactical inventory management in production-inventory systems," International Journal of Production Economics, Elsevier, vol. 125(1), pages 111-124, May.
    7. Smirnov, Dina & van Jaarsveld, Willem & Atan, Zümbül & de Kok, Ton, 2021. "Long-term resource planning in the high-tech industry: Capacity or inventory?," European Journal of Operational Research, Elsevier, vol. 293(3), pages 926-940.
    8. Ioannis Ch. Paschalidis & Yong Liu, 2003. "Large Deviations-Based Asymptotics for Inventory Control in Supply Chains," Operations Research, INFORMS, vol. 51(3), pages 437-460, June.
    9. van Houtum, G. J. & Inderfurth, K. & Zijm, W. H. M., 1996. "Materials coordination in stochastic multi-echelon systems," European Journal of Operational Research, Elsevier, vol. 95(1), pages 1-23, November.
    10. Barnes-Schuster, Dawn & Bassok, Yehuda & Anupindi, Ravi, 2006. "Optimizing delivery lead time/inventory placement in a two-stage production/distribution system," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1664-1684, November.
    11. Sumit Kunnumkal & Huseyin Topaloglu, 2009. "A stochastic approximation method for the single-leg revenue management problem with discrete demand distributions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 70(3), pages 477-504, December.
    12. Borgonovo, E., 2008. "Differential importance and comparative statics: An application to inventory management," International Journal of Production Economics, Elsevier, vol. 111(1), pages 170-179, January.
    13. Ganesh Janakiraman & Robin O. Roundy, 2004. "Lost-Sales Problems with Stochastic Lead Times: Convexity Results for Base-Stock Policies," Operations Research, INFORMS, vol. 52(5), pages 795-803, October.
    14. Yang, Jian & Qi, Xiangtong & Xia, Yusen & Yu, Gang, 2006. "Inventory control with Markovian capacity and the option of order rejection," European Journal of Operational Research, Elsevier, vol. 174(1), pages 622-645, October.
    15. Caldentey, René. & Wein, Lawrence M., 1999. "Analysis of decentralized production-inventory system," Working papers WP 4099-99., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    16. (Yale) Gong, Yeming & Yücesan, Enver, 2012. "Stochastic optimization for transshipment problems with positive replenishment lead times," International Journal of Production Economics, Elsevier, vol. 135(1), pages 61-72.
    17. Xu, Ningxiong, 2009. "Optimal policy for a two-facility inventory problem with storage constraints and two freight modes," European Journal of Operational Research, Elsevier, vol. 194(1), pages 78-84, April.
    18. Uday Rao & Alan Scheller-Wolf & Sridhar Tayur, 2000. "Development of a Rapid-Response Supply Chain at Caterpillar," Operations Research, INFORMS, vol. 48(2), pages 189-204, April.
    19. Yao Zhao & David Simchi-Levi, 2002. "The Value of Information Sharing in a Two-Stage Supply Chain with Production Capacity Constraints: The Infinite Horizon Case," Manufacturing & Service Operations Management, INFORMS, vol. 4(1), pages 21-24.
    20. Gavirneni, Srinagesh, 2006. "Price fluctuations, information sharing, and supply chain performance," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1651-1663, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:93:y:2008:i:11:p:1605-1615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.