[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/reveco/v22y2012i1p222-229.html
   My bibliography  Save this article

Predictions of growth in U.S. corporate profits: Asymmetric vs. symmetric loss

Author

Listed:
  • Baghestani, Hamid
  • Khallaf, Ashraf
Abstract
This study evaluates the Federal Reserve and private forecasts of growth in corporate profits for 1984–2004. These forecasts are both rational and directionally accurate but suggest different loss structures. The Federal Reserve forecasts tend to significantly under-predict and imply asymmetric loss. The private forecasts, however, are free of such bias, suggesting symmetric loss. Given that the Federal Reserve forecasts are made to help with policymaking, our findings point to the Fed's cautiousness not to incorrectly predict the downward moves in growth in corporate profits. The private forecasts are made by experts who (with a strong profit-motivated interest) attempt to generate financial gain and thus predict the upward moves as accurately as the downward moves.

Suggested Citation

  • Baghestani, Hamid & Khallaf, Ashraf, 2012. "Predictions of growth in U.S. corporate profits: Asymmetric vs. symmetric loss," International Review of Economics & Finance, Elsevier, vol. 22(1), pages 222-229.
  • Handle: RePEc:eee:reveco:v:22:y:2012:i:1:p:222-229
    DOI: 10.1016/j.iref.2011.09.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1059056011001080
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.iref.2011.09.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patron, Hilde, 2007. "The value of information about central bankers' preferences," International Review of Economics & Finance, Elsevier, vol. 16(1), pages 139-148.
    2. Michael P. Keane & David E. Runkle, 1998. "Are Financial Analysts' Forecasts of Corporate Profits Rational?," Journal of Political Economy, University of Chicago Press, vol. 106(4), pages 768-805, August.
    3. Pesaran, M Hashem & Timmermann, Allan, 1992. "A Simple Nonparametric Test of Predictive Performance," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 561-565, October.
    4. Mihir A. Desai, 2005. "The Degradation of Reported Corporate Profits," Journal of Economic Perspectives, American Economic Association, vol. 19(4), pages 171-192, Fall.
    5. Fama, Eugene F & French, Kenneth R, 2000. "Forecasting Profitability and Earnings," The Journal of Business, University of Chicago Press, vol. 73(2), pages 161-175, April.
    6. Graham Elliott & Allan Timmermann & Ivana Komunjer, 2005. "Estimation and Testing of Forecast Rationality under Flexible Loss," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(4), pages 1107-1125.
    7. Capistrán, Carlos, 2008. "Bias in Federal Reserve inflation forecasts: Is the Federal Reserve irrational or just cautious?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1415-1427, November.
    8. Baghestani, Hamid, 2008. "Federal Reserve versus private information: Who is the best unemployment rate predictor," Journal of Policy Modeling, Elsevier, vol. 30(1), pages 101-110.
    9. Lutz Kilian & Simone Manganelli, 2008. "The Central Banker as a Risk Manager: Estimating the Federal Reserve's Preferences under Greenspan," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(6), pages 1103-1129, September.
    10. Graham Elliott & Ivana Komunjer & Allan Timmermann, 2008. "Biases in Macroeconomic Forecasts: Irrationality or Asymmetric Loss?," Journal of the European Economic Association, MIT Press, vol. 6(1), pages 122-157, March.
    11. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    12. Tara Sinclair & H. O. Stekler & L. Kitzinger, 2010. "Directional forecasts of GDP and inflation: a joint evaluation with an application to Federal Reserve predictions," Applied Economics, Taylor & Francis Journals, vol. 42(18), pages 2289-2297.
    13. April Bang & Brian Chernoff & Charles P. Himmelberg & James M. Mahoney, 2004. "Recent revisions to corporate profits: what we know and when we knew it," Current Issues in Economics and Finance, Federal Reserve Bank of New York, vol. 10(Mar).
    14. William T. Gavin & Rachel J. Mandal, 2001. "Forecasting inflation and growth: do private forecasts match those of policymakers?," Review, Federal Reserve Bank of St. Louis, vol. 83(May), pages 11-20.
    15. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    16. Marco Aiolfi & Marius Rodriguez & Allan Timmermann, 2010. "Understanding Analysts' Earnings Expectations: Biases, Nonlinearities, and Predictability," Journal of Financial Econometrics, Oxford University Press, vol. 8(3), pages 305-334, Summer.
    17. S. P. Kothari & Susan Shu & Peter D. Wysocki, 2009. "Do Managers Withhold Bad News?," Journal of Accounting Research, Wiley Blackwell, vol. 47(1), pages 241-276, March.
    18. Christopher A. Sims, 2002. "The Role of Models and Probabilities in the Monetary Policy Process," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 33(2), pages 1-62.
    19. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    20. Margaret M. McConnell & Gabriel Perez-Quiros, 2000. "Output fluctuations in the United States: what has changed since the early 1980s?," Proceedings, Federal Reserve Bank of San Francisco, issue Mar.
    21. Patton, Andrew J. & Timmermann, Allan, 2007. "Testing Forecast Optimality Under Unknown Loss," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1172-1184, December.
    22. David H. Romer & Christina D. Romer, 2000. "Federal Reserve Information and the Behavior of Interest Rates," American Economic Review, American Economic Association, vol. 90(3), pages 429-457, June.
    23. Dean Croushore, 1993. "Introducing: the survey of professional forecasters," Business Review, Federal Reserve Bank of Philadelphia, issue Nov, pages 3-15.
    24. Dean Croushore, 1999. "How useful are forecasts of corporate profits?," Business Review, Federal Reserve Bank of Philadelphia, issue Sep, pages 3-12.
    25. Junttila, Juha & Korhonen, Marko, 2011. "Utilizing financial market information in forecasting real growth, inflation and real exchange rate," International Review of Economics & Finance, Elsevier, vol. 20(2), pages 281-301, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kryzanowski, Lawrence & Mohsni, Sana, 2013. "Growth of aggregate corporate earnings and cash-flows: Persistence and determinants," International Review of Economics & Finance, Elsevier, vol. 25(C), pages 13-23.
    2. Tsuchiya, Yoichi, 2014. "Purchasing and supply managers provide early clues on the direction of the US economy: An application of a new market-timing test," International Review of Economics & Finance, Elsevier, vol. 29(C), pages 599-618.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamid Baghestani, 2014. "On the loss structure of federal reserve forecasts of output growth," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 38(3), pages 518-527, July.
    2. Baghestani, Hamid, 2011. "Federal Reserve and private forecasts of growth in investment," Journal of Economics and Business, Elsevier, vol. 63(4), pages 290-305, July.
    3. Capistrán, Carlos, 2008. "Bias in Federal Reserve inflation forecasts: Is the Federal Reserve irrational or just cautious?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1415-1427, November.
    4. Nakazono, Yoshiyuki, 2013. "Strategic behavior of Federal Open Market Committee board members: Evidence from members’ forecasts," Journal of Economic Behavior & Organization, Elsevier, vol. 93(C), pages 62-70.
    5. Hamid Baghestani, 2013. "Evaluating Federal Reserve predictions of growth in consumer spending," Applied Economics, Taylor & Francis Journals, vol. 45(13), pages 1637-1646, May.
    6. Baghestani, Hamid & AbuAl-Foul, Bassam M., 2017. "Comparing Federal Reserve, Blue Chip, and time series forecasts of US output growth," Journal of Economics and Business, Elsevier, vol. 89(C), pages 47-56.
    7. Hamid Baghestani, 2011. "A directional analysis of Federal Reserve predictions of growth in unit labor costs and productivity," International Review of Applied Economics, Taylor & Francis Journals, vol. 25(3), pages 303-311.
    8. Sinclair, Tara M. & Gamber, Edward N. & Stekler, Herman & Reid, Elizabeth, 2012. "Jointly evaluating the Federal Reserve’s forecasts of GDP growth and inflation," International Journal of Forecasting, Elsevier, vol. 28(2), pages 309-314.
    9. Hamid Baghestani & Cassia Marchon, 2015. "On the accuracy of private forecasts of inflation and growth in Brazil," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 39(2), pages 370-381, April.
    10. Wang, Yiyao & Lee, Tae-Hwy, 2014. "Asymmetric loss in the Greenbook and the Survey of Professional Forecasters," International Journal of Forecasting, Elsevier, vol. 30(2), pages 235-245.
    11. Gamber, Edward N. & Smith, Julie K., 2009. "Are the Fed's inflation forecasts still superior to the private sector's?," Journal of Macroeconomics, Elsevier, vol. 31(2), pages 240-251, June.
    12. Patrick Schmidt & Matthias Katzfuss & Tilmann Gneiting, 2021. "Interpretation of point forecasts with unknown directive," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(6), pages 728-743, September.
    13. Veress, Aron & Kaiser, Lars, 2017. "Forecasting quality of professionals: Does affiliation matter?," The Quarterly Review of Economics and Finance, Elsevier, vol. 66(C), pages 159-168.
    14. Valentina Corradi & Sainan Jin & Norman R. Swanson, 2023. "Robust forecast superiority testing with an application to assessing pools of expert forecasters," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 596-622, June.
    15. Clements, Michael P., 2010. "Explanations of the inconsistencies in survey respondents' forecasts," European Economic Review, Elsevier, vol. 54(4), pages 536-549, May.
    16. Kontogeorgos, Georgios & Lambrias, Kyriacos, 2019. "An analysis of the Eurosystem/ECB projections," Working Paper Series 2291, European Central Bank.
    17. Carlos Capistr¡N & Allan Timmermann, 2009. "Disagreement and Biases in Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(2-3), pages 365-396, March.
    18. Paul Hubert, 2015. "Do Central Bank Forecasts Influence Private Agents? Forecasting Performance versus Signals," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 47(4), pages 771-789, June.
    19. Hamid Baghestani & Mohammad Arzaghi & Ilker Kaya, 2015. "On the accuracy of Blue Chip forecasts of interest rates and country risk premiums," Applied Economics, Taylor & Francis Journals, vol. 47(2), pages 113-122, January.
    20. Julieta Caunedo & Riccardo Dicecio & Ivana Komunjer & Michael T. Owyang, 2020. "Asymmetry, Complementarities, and State Dependence in Federal Reserve Forecasts," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 52(1), pages 205-228, February.

    More about this item

    Keywords

    FOMC; Survey of Professional Forecasters; Unbiasedness; Directional forecast accuracy; Loss structure;
    All these keywords.

    JEL classification:

    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G30 - Financial Economics - - Corporate Finance and Governance - - - General
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reveco:v:22:y:2012:i:1:p:222-229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620165 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.