[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v258y2023ics0925527323000294.html
   My bibliography  Save this article

Examining energy eco-efficiency in China's logistics industry

Author

Listed:
  • Yu, Xiaohong
  • Xu, Haiyan
  • Lou, Wengao
  • Xu, Xun
  • Shi, Victor
Abstract
Carbon dioxide (CO2) emission significantly affects sustainability efforts, calling for improvements in energy eco-efficiency (EEE). In this study, we use three methods—input–output indicators, projection pursuit regressions, and neural networks—to investigate the CO2 emission characteristics of the logistics industry in China and its provinces from 2010 to 2019. We find influential factors of carbon emissions and their corresponding efficiencies in various provinces of China. Our results reveal excess inputs and deficient outputs and the relationship between economic development levels and the environmental quality. Based on the results, we provide technical measures and managerial implications for effectively reducing CO2 emissions and improving EEE.

Suggested Citation

  • Yu, Xiaohong & Xu, Haiyan & Lou, Wengao & Xu, Xun & Shi, Victor, 2023. "Examining energy eco-efficiency in China's logistics industry," International Journal of Production Economics, Elsevier, vol. 258(C).
  • Handle: RePEc:eee:proeco:v:258:y:2023:i:c:s0925527323000294
    DOI: 10.1016/j.ijpe.2023.108797
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527323000294
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2023.108797?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Muhammed Ashiq Villanthenkodath & Mohini Gupta & Seema Saini & Malayaranjan Sahoo, 2021. "Impact of Economic Structure on the Environmental Kuznets Curve (EKC) hypothesis in India," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 10(1), pages 1-17, December.
    2. Halkos, George Emm. & Tzeremes, Nickolaos G., 2009. "Exploring the existence of Kuznets curve in countries' environmental efficiency using DEA window analysis," Ecological Economics, Elsevier, vol. 68(7), pages 2168-2176, May.
    3. Kaika, Dimitra & Zervas, Efthimios, 2013. "The Environmental Kuznets Curve (EKC) theory—Part A: Concept, causes and the CO2 emissions case," Energy Policy, Elsevier, vol. 62(C), pages 1392-1402.
    4. Haein Kim & Minsang Kim & Hyunggeun Kim & Sangkyu Park, 2020. "Decomposition Analysis of CO 2 Emission from Electricity Generation: Comparison of OECD Countries before and after the Financial Crisis," Energies, MDPI, vol. 13(14), pages 1-16, July.
    5. Natalia Porto & Matías Ciaschi, 2021. "Reformulating the tourism-extended environmental Kuznets curve: A quantile regression analysis under environmental legal conditions," Tourism Economics, , vol. 27(5), pages 991-1014, August.
    6. Tone, Kaoru & Sahoo, Biresh K., 2004. "Degree of scale economies and congestion: A unified DEA approach," European Journal of Operational Research, Elsevier, vol. 158(3), pages 755-772, November.
    7. Visani, Franco & Boccali, Filippo, 2020. "Purchasing price assessment of leverage items: A Data Envelopment Analysis approach," International Journal of Production Economics, Elsevier, vol. 223(C).
    8. Zhu Liu & Dabo Guan & Wei Wei & Steven J. Davis & Philippe Ciais & Jin Bai & Shushi Peng & Qiang Zhang & Klaus Hubacek & Gregg Marland & Robert J. Andres & Douglas Crawford-Brown & Jintai Lin & Hongya, 2015. "Reduced carbon emission estimates from fossil fuel combustion and cement production in China," Nature, Nature, vol. 524(7565), pages 335-338, August.
    9. Victor Moutinho & Mara Madaleno, 2021. "Assessing Eco-Efficiency in Asian and African Countries Using Stochastic Frontier Analysis," Energies, MDPI, vol. 14(4), pages 1-17, February.
    10. Damberg, Sarah V. & Hartmann, Julia & Heese, H. Sebastian, 2022. "Does bad press help or hinder sustainable supply chain management? An empirical investigation of US-based corporations," International Journal of Production Economics, Elsevier, vol. 249(C).
    11. Atanu Sengupta & Sanjoy De, 2020. "Assessing Performance of Banks in India Fifty Years After Nationalization," India Studies in Business and Economics, Springer, number 978-981-15-4435-4, December.
    12. Shahbaz, Muhammad & Nasir, Muhammad Ali & Roubaud, David, 2018. "Environmental degradation in France: The effects of FDI, financial development, and energy innovations," Energy Economics, Elsevier, vol. 74(C), pages 843-857.
    13. Kwon, He-Boong, 2017. "Exploring the predictive potential of artificial neural networks in conjunction with DEA in railroad performance modeling," International Journal of Production Economics, Elsevier, vol. 183(PA), pages 159-170.
    14. York, Richard & Rosa, Eugene A. & Dietz, Thomas, 2003. "STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts," Ecological Economics, Elsevier, vol. 46(3), pages 351-365, October.
    15. Joseph Sarkis & Srinivas Talluri, 2004. "Ecoefficiency Measurement Using Data Envelopment Analysis: Research And Practitioner Issues," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 91-123.
    16. Brantley Liddle, 2011. "Consumption-Driven Environmental Impact and Age Structure Change in OECD Countries," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 24(30), pages 749-770.
    17. Honma, Satoshi & Hu, Jin-Li, 2008. "Total-factor energy efficiency of regions in Japan," Energy Policy, Elsevier, vol. 36(2), pages 821-833, February.
    18. Lolli, F. & Gamberini, R. & Regattieri, A. & Balugani, E. & Gatos, T. & Gucci, S., 2017. "Single-hidden layer neural networks for forecasting intermittent demand," International Journal of Production Economics, Elsevier, vol. 183(PA), pages 116-128.
    19. George Vlontzos & Spyros Niavis & Panos Pardalos, 2017. "Testing for Environmental Kuznets Curve in the EU Agricultural Sector through an Eco-(in)Efficiency Index," Energies, MDPI, vol. 10(12), pages 1-15, December.
    20. Pasten, Roberto & Figueroa B., Eugenio, 2012. "The Environmental Kuznets Curve: A Survey of the Theoretical Literature," International Review of Environmental and Resource Economics, now publishers, vol. 6(3), pages 195-224, December.
    21. Zhou, Peng & Poh, Kim Leng & Ang, Beng Wah, 2007. "A non-radial DEA approach to measuring environmental performance," European Journal of Operational Research, Elsevier, vol. 178(1), pages 1-9, April.
    22. Wen-chuan Wang & Kwok-wing Chau & Dong-mei Xu & Lin Qiu & Can-can Liu, 2017. "The Annual Maximum Flood Peak Discharge Forecasting Using Hermite Projection Pursuit Regression with SSO and LS Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 461-477, January.
    23. Tone, Kaoru, 2002. "A slacks-based measure of super-efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 143(1), pages 32-41, November.
    24. Mette Asmild & Joseph Paradi & Vanita Aggarwall & Claire Schaffnit, 2004. "Combining DEA Window Analysis with the Malmquist Index Approach in a Study of the Canadian Banking Industry," Journal of Productivity Analysis, Springer, vol. 21(1), pages 67-89, January.
    25. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    26. Reinhard, Stijn & Knox Lovell, C. A. & Thijssen, Geert J., 2000. "Environmental efficiency with multiple environmentally detrimental variables; estimated with SFA and DEA," European Journal of Operational Research, Elsevier, vol. 121(2), pages 287-303, March.
    27. Raul Arango Miranda & Robert Hausler & Rabindranarth Romero Lopez & Mathias Glaus & Jose Ramon Pasillas-Diaz, 2020. "Testing the Environmental Kuznets Curve Hypothesis in North America’s Free Trade Agreement (NAFTA) Countries," Energies, MDPI, vol. 13(12), pages 1-13, June.
    28. Seiford, Lawrence M. & Zhu, Joe, 2002. "Modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 142(1), pages 16-20, October.
    29. Feng Ren & Xin Yu & Quan Li, 2020. "Study on ETFEE in the BTH Region Based on the Window-SBM-Undesirable Model," Discrete Dynamics in Nature and Society, Hindawi, vol. 2020, pages 1-10, October.
    30. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    31. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    32. Song, Malin & Zheng, Wanping & Wang, Zeya, 2016. "Environmental efficiency and energy consumption of highway transportation systems in China," International Journal of Production Economics, Elsevier, vol. 181(PB), pages 441-449.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chargui, Kaoutar & Zouadi, Tarik & Sreedharan, V. Raja & El Fallahi, Abdellah & Reghioui, Mohamed, 2023. "A novel robust exact decomposition algorithm for berth and quay crane allocation and scheduling problem considering uncertainty and energy efficiency," Omega, Elsevier, vol. 118(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
    2. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    3. Huang, Chin-wei & Chiu, Yung-ho & Fang, Wei-ta & Shen, Neng, 2014. "Assessing the performance of Taiwan’s environmental protection system with a non-radial network DEA approach," Energy Policy, Elsevier, vol. 74(C), pages 547-556.
    4. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    5. Song, Malin & An, Qingxian & Zhang, Wei & Wang, Zeya & Wu, Jie, 2012. "Environmental efficiency evaluation based on data envelopment analysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4465-4469.
    6. Kiril Simeonovski & Tamara Kaftandzieva & Gregory Brock, 2021. "Energy Efficiency Management across EU Countries: A DEA Approach," Energies, MDPI, vol. 14(9), pages 1-19, May.
    7. Gómez-Calvet, Roberto & Conesa, David & Gómez-Calvet, Ana Rosa & Tortosa-Ausina, Emili, 2014. "Energy efficiency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures?," Applied Energy, Elsevier, vol. 132(C), pages 137-154.
    8. George Halkos & George Papageorgiou, 2016. "Spatial environmental efficiency indicators in regional waste generation: a nonparametric approach," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 59(1), pages 62-78, January.
    9. Zhang, Bin & Lu, Danting & He, Yan & Chiu, Yung-ho, 2018. "The efficiencies of resource-saving and environment: A case study based on Chinese cities," Energy, Elsevier, vol. 150(C), pages 493-507.
    10. Liang-Han Ma & Jin-Chi Hsieh & Yung-Ho Chiu, 2020. "Comparing regional differences in global energy performance," Energy & Environment, , vol. 31(6), pages 943-960, September.
    11. Halkos, George E. & Tzeremes, Nickolaos G., 2013. "A conditional directional distance function approach for measuring regional environmental efficiency: Evidence from UK regions," European Journal of Operational Research, Elsevier, vol. 227(1), pages 182-189.
    12. Chiu, Yung-Ho & Lee, Jen-Hui & Lu, Ching-Cheng & Shyu, Ming-Kuang & Luo, Zhengying, 2012. "The technology gap and efficiency measure in WEC countries: Application of the hybrid meta frontier model," Energy Policy, Elsevier, vol. 51(C), pages 349-357.
    13. Shih-Heng Yu, 2019. "Benchmarking and Performance Evaluation Towards the Sustainable Development of Regions in Taiwan: A Minimum Distance-Based Measure with Undesirable Outputs in Additive DEA," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 144(3), pages 1323-1348, August.
    14. Nelson Amowine & Zhiqiang Ma & Mingxing Li & Zhixiang Zhou & Benjamin Azembila Asunka & James Amowine, 2019. "Energy Efficiency Improvement Assessment in Africa: An Integrated Dynamic DEA Approach," Energies, MDPI, vol. 12(20), pages 1-17, October.
    15. Qingxian An & Haoxun Chen & Jie Wu & Liang Liang, 2015. "Measuring slacks-based efficiency for commercial banks in China by using a two-stage DEA model with undesirable output," Annals of Operations Research, Springer, vol. 235(1), pages 13-35, December.
    16. Halkos, George & Tzeremes, Nickolaos, 2013. "An additive two-stage DEA approach creating sustainability efficiency indexes," MPRA Paper 44231, University Library of Munich, Germany.
    17. Du, Huibin & Matisoff, Daniel C. & Wang, Yangyang & Liu, Xi, 2016. "Understanding drivers of energy efficiency changes in China," Applied Energy, Elsevier, vol. 184(C), pages 1196-1206.
    18. Honma, Satoshi, 2014. "Does international trade improve environmental efficiency? An application of a super slacks-based measurement of efficiency," MPRA Paper 56950, University Library of Munich, Germany.
    19. Afzalinejad, Mohammad, 2020. "Reverse efficiency measures for environmental assessment in data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 70(C).
    20. Lu, Ching-Cheng & Chiu, Yung-Ho & Shyu, Ming-Kuang & Lee, Jen-Hui, 2013. "Measuring CO2 emission efficiency in OECD countries: Application of the Hybrid Efficiency model," Economic Modelling, Elsevier, vol. 32(C), pages 130-135.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:258:y:2023:i:c:s0925527323000294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.