[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v651y2024ics0378437124005302.html
   My bibliography  Save this article

Modelling the unidirectional and bidirectional flow of pedestrians based on convolutional neural networks

Author

Listed:
  • Wang, Tao
  • Zhang, Zhichao
  • Nong, Tingting
  • Tan, Jingyu
  • Lan, Wenfei
  • Zhang, Wenke
  • Lee, Eric Wai Ming
  • Shi, Meng
Abstract
In the current urbanisation process occurring worldwide, the management of pedestrian flow in large public spaces to ensure public area safety has become a highly scrutinised issue. This paper introduces a convolutional neural network-based model for simulating pedestrian movement, aimed at improving crowd management and public safety. The model predicts pedestrian trajectories by analysing historical data and comprises four key components: trajectory embedding network, encoder, decoder, and trajectory output network. In addition, the model employs highly parallelisable fully connected layers and convolutional layers to efficiently handle temporal dependencies. The results demonstrate the excellent performance of the model in both unidirectional and bidirectional pedestrian flow scenarios. For example, the model not only successfully reproduced pedestrians’ self-organising behaviour (lane formation) but also rapidly (< 5 ms) and accurately simulated their fundamental features, such as density, velocity, and flow rate. To quantitatively evaluate the precision of the simulation, the average displacement error (ADE) and final displacement error (FDE) were applied and were calculated to be 0.104 m and 0.188 m, respectively, in unidirectional flow scenarios, and 0.126 m and 0.226 m, respectively, in bidirectional scenarios. Furthermore, the fluctuation of ADE across various scenarios remained within 0.05 m, and trajectories with ADE exceeding 0.3 m accounted for less than 5 % of the total, demonstrating the model’s strong generalisability and robustness. The results indicate that the model is reasonable and capable of rapidly providing situational awareness for security personnel and enhancing crowd management.

Suggested Citation

  • Wang, Tao & Zhang, Zhichao & Nong, Tingting & Tan, Jingyu & Lan, Wenfei & Zhang, Wenke & Lee, Eric Wai Ming & Shi, Meng, 2024. "Modelling the unidirectional and bidirectional flow of pedestrians based on convolutional neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 651(C).
  • Handle: RePEc:eee:phsmap:v:651:y:2024:i:c:s0378437124005302
    DOI: 10.1016/j.physa.2024.130021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124005302
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.130021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:651:y:2024:i:c:s0378437124005302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.