[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v557y2020ics0378437120304489.html
   My bibliography  Save this article

Fractional econophysics: Market price dynamics with memory effects

Author

Listed:
  • Tarasov, Vasily E.
Abstract
In recent years, a new branch of the econophysics has appeared and began to actively develop, which can be called fractional econophysics. We can define fractional econophysics as a new direction of research applying methods developed in physical sciences, to describe processes in economics and finance, basically those including power-law memory and spatial nonlocality. The mathematical tool of this branch of econophysics is the fractional calculus. The birth of the fractional econophysics can be dated 2000 and it can be primarily associated with the works of a group, which includes E. Scalas, F. Mainardi, R. Gorenflo, M. Raberto, in the field of the continuous-time finance. The fractional econophysics was born on the border of the centuries: the first paper was submitted to Physica A on 10 December 1999. Then a lot of work was done on the adaptation and application of fractional dynamics methods, physical model and equations, previously used in the physical sciences, to the description of processes in economics and finance. In fact, at the end of 2019 and at the beginning of 2020 there will be a twenty-year anniversary of fractional econophysics. In this paper, using the fractional econophysics approach, we consider dynamics of market prices, in which power-law memory effects are taken into account. We propose new economic model of the price dynamics in the market for a single product. In this model we assume that economic entities (merchants, buyers, suppliers) can remember how stocks of goods and their prices have changed over time.

Suggested Citation

  • Tarasov, Vasily E., 2020. "Fractional econophysics: Market price dynamics with memory effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
  • Handle: RePEc:eee:phsmap:v:557:y:2020:i:c:s0378437120304489
    DOI: 10.1016/j.physa.2020.124865
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120304489
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.124865?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scalas, Enrico, 2006. "The application of continuous-time random walks in finance and economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(2), pages 225-239.
    2. Sadeghi, Amir & Cardoso, João R., 2018. "Some notes on properties of the matrix Mittag-Leffler function," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 733-738.
    3. Laskin, Nick, 2000. "Fractional market dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 482-492.
    4. Raberto, Marco & Scalas, Enrico & Mainardi, Francesco, 2002. "Waiting-times and returns in high-frequency financial data: an empirical study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 749-755.
    5. Scalas, Enrico & Gorenflo, Rudolf & Mainardi, Francesco, 2000. "Fractional calculus and continuous-time finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 284(1), pages 376-384.
    6. Meerschaert, Mark M. & Scalas, Enrico, 2006. "Coupled continuous time random walks in finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 114-118.
    7. Enrico Scalas, 2006. "Five Years of Continuous-time Random Walks in Econophysics," Lecture Notes in Economics and Mathematical Systems, in: Akira Namatame & Taisei Kaizouji & Yuuji Aruka (ed.), The Complex Networks of Economic Interactions, pages 3-16, Springer.
    8. Mainardi, Francesco & Raberto, Marco & Gorenflo, Rudolf & Scalas, Enrico, 2000. "Fractional calculus and continuous-time finance II: the waiting-time distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 468-481.
    9. Enrico Scalas & Rudolf Gorenflo & Hugh Luckock & Francesco Mainardi & Maurizio Mantelli & Marco Raberto, 2004. "Anomalous waiting times in high-frequency financial data," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 695-702.
    10. Tarasov, Vasily E. & Tarasova, Valentina V., 2018. "Macroeconomic models with long dynamic memory: Fractional calculus approach," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 466-486.
    11. Stanley, H.E. & Afanasyev, V. & Amaral, L.A.N. & Buldyrev, S.V. & Goldberger, A.L. & Havlin, S. & Leschhorn, H. & Maass, P. & Mantegna, R.N. & Peng, C.-K. & Prince, P.A. & Salinger, M.A. & Stanley, M., 1996. "Anomalous fluctuations in the dynamics of complex systems: from DNA and physiology to econophysics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 224(1), pages 302-321.
    12. J. A. Tenreiro Machado & Alexandra M. S. F. Galhano & Juan J. Trujillo, 2014. "On development of fractional calculus during the last fifty years," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(1), pages 577-582, January.
    13. repec:cup:cbooks:9781107013445 is not listed on IDEAS
    14. Richmond, Peter & Mimkes, Jurgen & Hutzler, Stefan, 2013. "Econophysics and Physical Economics," OUP Catalogue, Oxford University Press, number 9780199674701.
    15. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Inga Timofejeva & Zenonas Navickas & Tadas Telksnys & Romas Marcinkevicius & Minvydas Ragulskis, 2021. "An Operator-Based Scheme for the Numerical Integration of FDEs," Mathematics, MDPI, vol. 9(12), pages 1-17, June.
    2. Vasily E. Tarasov, 2024. "General Fractional Economic Dynamics with Memory," Mathematics, MDPI, vol. 12(15), pages 1-24, August.
    3. Vasily E. Tarasov, 2020. "Non-Linear Macroeconomic Models of Growth with Memory," Mathematics, MDPI, vol. 8(11), pages 1-22, November.
    4. Maryam Alkandari & Yuri Luchko, 2024. "Operational Calculus for the 1st-Level General Fractional Derivatives and Its Applications," Mathematics, MDPI, vol. 12(17), pages 1-23, August.
    5. Aktaev, Nurken E. & Bannova, K.A., 2022. "Mathematical modeling of probability distribution of money by means of potential formation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    6. Borin, Daniel, 2024. "Caputo fractional standard map: Scaling invariance analyses," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    7. Sakiru, Solarin Adebola & Gil-Alana, Luis A. & Gonzalez-Blanch, Maria Jesus, 2022. "Persistence of economic complexity in OECD countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    8. Lyudmila Gadasina & Lyudmila Vyunenko, 2022. "Applying spline-based phase analysis to macroeconomic dynamics," Dependence Modeling, De Gruyter, vol. 10(1), pages 207-214, January.
    9. Daniele Mortari & Roberto Garrappa & Luigi Nicolò, 2023. "Theory of Functional Connections Extended to Fractional Operators," Mathematics, MDPI, vol. 11(7), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vasily E. Tarasov, 2019. "On History of Mathematical Economics: Application of Fractional Calculus," Mathematics, MDPI, vol. 7(6), pages 1-28, June.
    2. Vasily E. Tarasov & Valentina V. Tarasova, 2019. "Dynamic Keynesian Model of Economic Growth with Memory and Lag," Mathematics, MDPI, vol. 7(2), pages 1-17, February.
    3. Valentina V. Tarasova & Vasily E. Tarasov, 2017. "Concept of dynamic memory in economics," Papers 1712.09088, arXiv.org.
    4. Scalas, Enrico, 2007. "Mixtures of compound Poisson processes as models of tick-by-tick financial data," Chaos, Solitons & Fractals, Elsevier, vol. 34(1), pages 33-40.
    5. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2009. "Detrended fluctuation analysis of intertrade durations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 433-440.
    6. Ali Balcı, Mehmet, 2017. "Time fractional capital-induced labor migration model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 91-98.
    7. Ni, Xiao-Hui & Jiang, Zhi-Qiang & Gu, Gao-Feng & Ren, Fei & Chen, Wei & Zhou, Wei-Xing, 2010. "Scaling and memory in the non-Poisson process of limit order cancelation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2751-2761.
    8. Ponta, Linda & Trinh, Mailan & Raberto, Marco & Scalas, Enrico & Cincotti, Silvano, 2019. "Modeling non-stationarities in high-frequency financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 173-196.
    9. Scalas, Enrico & Politi, Mauro, 2012. "A parsimonious model for intraday European option pricing," Economics Discussion Papers 2012-14, Kiel Institute for the World Economy (IfW Kiel).
    10. David, S.A. & Machado, J.A.T. & Quintino, D.D. & Balthazar, J.M., 2016. "Partial chaos suppression in a fractional order macroeconomic model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 122(C), pages 55-68.
    11. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2008. "Scaling in the distribution of intertrade durations of Chinese stocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(23), pages 5818-5825.
    12. Valentina V. Tarasova & Vasily E. Tarasov, 2017. "Dynamic intersectoral models with power-law memory," Papers 1712.09087, arXiv.org.
    13. Jaros{l}aw Klamut & Tomasz Gubiec, 2018. "Directed Continuous-Time Random Walk with memory," Papers 1807.01934, arXiv.org.
    14. Scalas, Enrico & Kaizoji, Taisei & Kirchler, Michael & Huber, Jürgen & Tedeschi, Alessandra, 2006. "Waiting times between orders and trades in double-auction markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 463-471.
    15. Schumer, Rina & Baeumer, Boris & Meerschaert, Mark M., 2011. "Extremal behavior of a coupled continuous time random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(3), pages 505-511.
    16. Langlands, T.A.M., 2006. "Solution of a modified fractional diffusion equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 136-144.
    17. Scalas, Enrico & Gallegati, Mauro & Guerci, Eric & Mas, David & Tedeschi, Alessandra, 2006. "Growth and allocation of resources in economics: The agent-based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 86-90.
    18. D’Amico, Guglielmo & Janssen, Jacques & Manca, Raimondo, 2009. "European and American options: The semi-Markov case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(15), pages 3181-3194.
    19. Tarasov, Vasily E. & Tarasova, Valentina V., 2018. "Macroeconomic models with long dynamic memory: Fractional calculus approach," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 466-486.
    20. Scalas, Enrico, 2006. "The application of continuous-time random walks in finance and economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(2), pages 225-239.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:557:y:2020:i:c:s0378437120304489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.