[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v494y2018icp87-117.html
   My bibliography  Save this article

An accurate European option pricing model under Fractional Stable Process based on Feynman Path Integral

Author

Listed:
  • Ma, Chao
  • Ma, Qinghua
  • Yao, Haixiang
  • Hou, Tiancheng
Abstract
In this paper, we propose to use the Fractional Stable Process (FSP) for option pricing. The FSP is one of the few candidates to directly model a number of desired empirical properties of asset price risk neutral dynamics. However, pricing the vanilla European option under FSP is difficult and problematic. In the paper, built upon the developed Feynman Path Integral inspired techniques, we present a novel computational model for option pricing, i.e. the Fractional Stable Process Path Integral (FSPPI) model under a general fractional stable distribution that tackles this problem. Numerical and empirical experiments show that the proposed pricing model provides a correction of the Black–Scholes pricing error — overpricing long term options, underpricing short term options; overpricing out-of-the-money options, underpricing in-the-money options without any additional structures such as stochastic volatility and a jump process.

Suggested Citation

  • Ma, Chao & Ma, Qinghua & Yao, Haixiang & Hou, Tiancheng, 2018. "An accurate European option pricing model under Fractional Stable Process based on Feynman Path Integral," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 87-117.
  • Handle: RePEc:eee:phsmap:v:494:y:2018:i:c:p:87-117
    DOI: 10.1016/j.physa.2017.11.120
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117312050
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.11.120?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kon, Stanley J, 1984. "Models of Stock Returns-A Comparison," Journal of Finance, American Finance Association, vol. 39(1), pages 147-165, March.
    2. Bouchaud,Jean-Philippe & Potters,Marc, 2009. "Theory of Financial Risk and Derivative Pricing," Cambridge Books, Cambridge University Press, number 9780521741866, September.
    3. Hsu, Y.L. & Lin, T.I. & Lee, C.F., 2008. "Constant elasticity of variance (CEV) option pricing model: Integration and detailed derivation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(1), pages 60-71.
    4. Knight, Keith, 1997. "Stable Non-Gaussian Random ProcessesGennady Samorodnitsky and Murad S. Taqqu Chapman and Hall, 1994," Econometric Theory, Cambridge University Press, vol. 13(1), pages 133-142, February.
    5. Weron, Rafal, 1996. "Correction to: "On the Chambers–Mallows–Stuck Method for Simulating Skewed Stable Random Variables"," MPRA Paper 20761, University Library of Munich, Germany, revised 2010.
    6. Peter Carr & Liuren Wu, 2003. "The Finite Moment Log Stable Process and Option Pricing," Journal of Finance, American Finance Association, vol. 58(2), pages 753-777, April.
    7. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    8. Damiano Brigo & Fabio Mercurio, 2002. "Lognormal-Mixture Dynamics And Calibration To Market Volatility Smiles," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 5(04), pages 427-446.
    9. Devreese, J.P.A. & Lemmens, D. & Tempere, J., 2010. "Path integral approach to Asian options in the Black–Scholes model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(4), pages 780-788.
    10. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    11. Jackwerth, Jens Carsten & Rubinstein, Mark, 1996. "Recovering Probability Distributions from Option Prices," Journal of Finance, American Finance Association, vol. 51(5), pages 1611-1632, December.
    12. C. F. Lo & P. H. Yuen & C. H. Hui, 2000. "Constant Elasticity Of Variance Option Pricing Model With Time-Dependent Parameters," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 661-674.
    13. L. C. G. Rogers, 1997. "Arbitrage with Fractional Brownian Motion," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 95-105, January.
    14. MacBeth, James D & Merville, Larry J, 1980. "Tests of the Black-Scholes and Cox Call Option Valuation Models," Journal of Finance, American Finance Association, vol. 35(2), pages 285-301, May.
    15. Charles J. Corrado & Tie Su, 1996. "S&P 500 index option tests of Jarrow and Rudd's approximate option valuation formula," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 16(6), pages 611-629, September.
    16. J. Huston McCulloch, 2004. "The Risk-Neutral Measure and Option Pricing under Log-Stable Uncertainty using Romberg Fourier Inversion," Computing in Economics and Finance 2004 13, Society for Computational Economics.
    17. G. Bormetti & G. Montagna & N. Moreni & O. Nicrosini, 2006. "Pricing exotic options in a path integral approach," Quantitative Finance, Taylor & Francis Journals, vol. 6(1), pages 55-66.
    18. Johnson, Herb & Shanno, David, 1987. "Option Pricing when the Variance Is Changing," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(2), pages 143-151, June.
    19. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    20. Weron, Rafal, 1996. "On the Chambers-Mallows-Stuck method for simulating skewed stable random variables," Statistics & Probability Letters, Elsevier, vol. 28(2), pages 165-171, June.
    21. Zura Kakushadze, 2015. "Path integral and asset pricing," Quantitative Finance, Taylor & Francis Journals, vol. 15(11), pages 1759-1771, November.
    22. Scott, Louis O., 1987. "Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(4), pages 419-438, December.
    23. Jean-Philippe Bouchaud & Didier Sornette, 1994. "The Black-Scholes option pricing problem in mathematical finance: generalization and extensions for a large class of stochastic processes," Science & Finance (CFM) working paper archive 500040, Science & Finance, Capital Fund Management.
    24. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    25. repec:bla:jfinan:v:58:y:2003:i:2:p:753-778 is not listed on IDEAS
    26. Mark. B. Garman., 1976. "A General Theory of Asset Valuation under Diffusion State Processes," Research Program in Finance Working Papers 50, University of California at Berkeley.
    27. Emanuel, David C. & MacBeth, James D., 1982. "Further Results on the Constant Elasticity of Variance Call Option Pricing Model," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 17(4), pages 533-554, November.
    28. Jean-Pierre Fouque & George Papanicolaou & K. Ronnie Sircar, 2000. "Mean-Reverting Stochastic Volatility," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(01), pages 101-142.
    29. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    30. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    31. Damiano Brigo & Fabio Mercurio & Giulio Sartorelli, 2003. "Alternative asset-price dynamics and volatility smile," Quantitative Finance, Taylor & Francis Journals, vol. 3(3), pages 173-183.
    32. Jana, T.K. & Roy, P., 2011. "Supersymmetry in option pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(12), pages 2350-2355.
    33. Young Shin Kim, 2016. "Long-Range Dependence in the Risk-Neutral Measure for the Market on Lehman Brothers Collapse," Applied Mathematical Finance, Taylor & Francis Journals, vol. 23(4), pages 309-322, July.
    34. Vasile, Emilia & Armeanu, Dan, 2009. "Empirical Study On The Performances Of Black-Scholes Model For Evaluating European Options," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 6(1), pages 48-62, March.
    35. Jin‐Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32, January.
    36. J. Huston McCulloch, 2003. "The Risk-Neutral Measure and Option Pricing under Log-Stable Uncertainty," Working Papers 03-07, Ohio State University, Department of Economics.
    37. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    38. Ole E. Barndorff-Nielsen, 1997. "Processes of normal inverse Gaussian type," Finance and Stochastics, Springer, vol. 2(1), pages 41-68.
    39. G. Bormetti & G. Montagna & N. Moreni & O. Nicrosini, 2004. "Pricing Exotic Options in a Path Integral Approach," Papers cond-mat/0407321, arXiv.org, revised May 2006.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Pan & Pan, Jian & Yue, Qin & Zhang, Jinbo, 2021. "Pricing of financial derivatives based on the Tsallis statistical theory," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    2. Ghafarian, Bahareh & Hanafizadeh, Payam & Qahi, Amir Hossein Mortazavi, 2018. "Applying Greek letters to robust option price modeling by binomial-tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 632-639.
    3. Poitras, Geoffrey, 2018. "The pre-history of econophysics and the history of economics: Boltzmann versus the marginalists," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 89-98.
    4. Omid Jenabi & Nazar Dahmardeh Ghale No, 2018. "Option Pricing in Stochastic Volatility Models Driven by Fractional Jump-Diffusion Processes," International Journal of Finance, Insurance and Risk Management, International Journal of Finance, Insurance and Risk Management, vol. 8(1), pages 1374-1374.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    2. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    3. Axel A. Araneda & Marcelo J. Villena, 2018. "Computing the CEV option pricing formula using the semiclassical approximation of path integral," Papers 1803.10376, arXiv.org.
    4. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, August.
    5. Kim, Hyun-Gyoon & Kim, Jeong-Hoon, 2023. "A stochastic-local volatility model with Le´vy jumps for pricing derivatives," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    6. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    7. Li, Minqiang, 2008. "Price Deviations of S&P 500 Index Options from the Black-Scholes Formula Follow a Simple Pattern," MPRA Paper 11530, University Library of Munich, Germany.
    8. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    9. Rombouts, Jeroen V.K. & Stentoft, Lars, 2015. "Option pricing with asymmetric heteroskedastic normal mixture models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 635-650.
    10. Gonçalo Faria & João Correia-da-Silva, 2014. "A closed-form solution for options with ambiguity about stochastic volatility," Review of Derivatives Research, Springer, vol. 17(2), pages 125-159, July.
    11. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.
    12. Kung, James J. & Lee, Lung-Sheng, 2009. "Option pricing under the Merton model of the short rate," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(2), pages 378-386.
    13. Kakushadze, Zura, 2017. "Volatility smile as relativistic effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 475(C), pages 59-76.
    14. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, May.
    15. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    16. Robert F. Engle & Joshua V. Rosenberg, 1995. "GARCH Gamma," NBER Working Papers 5128, National Bureau of Economic Research, Inc.
    17. Zura Kakushadze, 2016. "Volatility Smile as Relativistic Effect," Papers 1610.02456, arXiv.org, revised Feb 2017.
    18. Cheng Few Lee & Yibing Chen & John Lee, 2020. "Alternative Methods to Derive Option Pricing Models: Review and Comparison," World Scientific Book Chapters, in: Cheng Few Lee & John C Lee (ed.), HANDBOOK OF FINANCIAL ECONOMETRICS, MATHEMATICS, STATISTICS, AND MACHINE LEARNING, chapter 102, pages 3573-3617, World Scientific Publishing Co. Pte. Ltd..
    19. Chen, An-Sing & Leung, Mark T., 2005. "Modeling time series information into option prices: An empirical evaluation of statistical projection and GARCH option pricing model," Journal of Banking & Finance, Elsevier, vol. 29(12), pages 2947-2969, December.
    20. Bin Xie & Weiping Li & Nan Liang, 2021. "Pricing S&P 500 Index Options with L\'evy Jumps," Papers 2111.10033, arXiv.org, revised Nov 2021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:494:y:2018:i:c:p:87-117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.