[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v419y2015icp575-584.html
   My bibliography  Save this article

Unveiling correlations between financial variables and topological metrics of trading networks: Evidence from a stock and its warrant

Author

Listed:
  • Li, Ming-Xia
  • Jiang, Zhi-Qiang
  • Xie, Wen-Jie
  • Xiong, Xiong
  • Zhang, Wei
  • Zhou, Wei-Xing
Abstract
Traders develop and adopt different trading strategies attempting to maximize their profits in financial markets. These trading strategies not only result in specific topological structures in trading networks, which connect the traders with the pairwise buy–sell relationships, but also have potential impacts on market dynamics. Here, we present a detailed analysis on how the market behaviors are correlated with the structures of traders in trading networks based on audit trail data for the Baosteel stock and its warrant at the transaction level from 22 August 2005 to 23 August 2006. In our investigation, we divide each trade day into 48 rolling time windows with a length of 5 min, construct a trading network within each window, and obtain a time series of over 11,600 trading networks. We find that there are strongly simultaneous correlations between the topological metrics (including network centralization, assortative index, and average path length) of trading networks that characterize the patterns of order execution and the financial variables (including return, volatility, intertrade duration, and trading volume) for the stock and its warrant. Our analysis may shed new lights on how the microscopic interactions between elements within complex system affect the system’s performance.

Suggested Citation

  • Li, Ming-Xia & Jiang, Zhi-Qiang & Xie, Wen-Jie & Xiong, Xiong & Zhang, Wei & Zhou, Wei-Xing, 2015. "Unveiling correlations between financial variables and topological metrics of trading networks: Evidence from a stock and its warrant," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 575-584.
  • Handle: RePEc:eee:phsmap:v:419:y:2015:i:c:p:575-584
    DOI: 10.1016/j.physa.2014.10.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114008772
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.10.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. J.-J. Tseng & S.-P. Li & S.-C. Wang, 2010. "Experimental evidence for the interplay between individual wealth and transaction network," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 73(1), pages 69-74, January.
    2. Jie-Jun Tseng & Sai-Ping Li & Sun-Chong Wang, 2010. "Experimental evidence for the interplay between individual wealth and transaction network," Papers 1001.3731, arXiv.org.
    3. Lada Adamic & Celso Brunetti & Jeffrey H. Harris & Andrei Kirilenko, 2017. "Trading networks," Econometrics Journal, Royal Economic Society, vol. 20(3), pages 126-149, October.
    4. Ruan, Yong-Ping & Zhou, Wei-Xing, 2011. "Long-term correlations and multifractal nature in the intertrade durations of a liquid Chinese stock and its warrant," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(9), pages 1646-1654.
    5. F. Kyriakopoulos & S. Thurner & C. Puhr & S. W. Schmitz, 2009. "Network and eigenvalue analysis of financial transaction networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(4), pages 523-531, October.
    6. Xiao-Qian Sun & Hua-Wei Shen & Xue-Qi Cheng & Zhao-Yang Wang, 2012. "Degree-Strength Correlation Reveals Anomalous Trading Behavior," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-9, October.
    7. Wei-Xing Zhou, 2012. "Universal price impact functions of individual trades in an order-driven market," Quantitative Finance, Taylor & Francis Journals, vol. 12(8), pages 1253-1263, June.
    8. Wang, Junjie & Zhou, Shuigeng & Guan, Jihong, 2011. "Characteristics of real futures trading networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(2), pages 398-409.
    9. Wei Xiong & Jialin Yu, 2011. "The Chinese Warrants Bubble," American Economic Review, American Economic Association, vol. 101(6), pages 2723-2753, October.
    10. Tseng, Jie-Jun & Lin, Chih-Hao & Lin, Chih-Ting & Wang, Sun-Chong & Li, Sai-Ping, 2010. "Statistical properties of agent-based models in markets with continuous double auction mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(8), pages 1699-1707.
    11. Rafal Rak & Stanislaw Drozdz & Jaroslaw Kwapien & Pawel Oswiecimka, 2013. "Stock returns versus trading volume: is the correspondence more general?," Papers 1310.7018, arXiv.org.
    12. P. Gopikrishnan & M. Meyer & L.A.N. Amaral & H.E. Stanley, 1998. "Inverse cubic law for the distribution of stock price variations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 3(2), pages 139-140, July.
    13. Drożdż, S & Grümmer, F & Górski, A.Z & Ruf, F & Speth, J, 2000. "Dynamics of competition between collectivity and noise in the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 440-449.
    14. Plamen Ch. Ivanov & Ainslie Yuen & Boris Podobnik & Youngki Lee, 2004. "Common Scaling Patterns in Intertrade Times of U. S. Stocks," Papers cond-mat/0403662, arXiv.org.
    15. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2008. "Scaling in the distribution of intertrade durations of Chinese stocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(23), pages 5818-5825.
    16. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2010. "Complex stock trading network among investors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4929-4941.
    17. Karpoff, Jonathan M., 1987. "The Relation between Price Changes and Trading Volume: A Survey," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(1), pages 109-126, March.
    18. Gu, Gao-Feng & Chen, Wei & Zhou, Wei-Xing, 2008. "Empirical distributions of Chinese stock returns at different microscopic timescales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 495-502.
    19. Junjie Wang & Shuigeng Zhou & Jihong Guan, 2010. "Characteristics of Real Futures Trading Networks," Papers 1004.4402, arXiv.org, revised Feb 2011.
    20. Xiao-Qian Sun & Xue-Qi Cheng & Hua-Wei Shen & Zhao-Yang Wang, 2011. "Distinguishing manipulated stocks via trading network analysis," Papers 1110.2260, arXiv.org.
    21. Sun, Xiao-Qian & Cheng, Xue-Qi & Shen, Hua-Wei & Wang, Zhao-Yang, 2011. "Distinguishing manipulated stocks via trading network analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3427-3434.
    22. Wei Xiong & Jialin Yu, 2011. "The Chinese Warrants Bubble," Working Papers 1398, Princeton University, Department of Economics, Econometric Research Program..
    23. Fabrizio Lillo & J. Doyne Farmer & Rosario N. Mantegna, 2003. "Master curve for price-impact function," Nature, Nature, vol. 421(6919), pages 129-130, January.
    24. G.-H. Mu & W. Chen & J. Kertész & W.-X. Zhou, 2009. "Preferred numbers and the distributions of trade sizes and trading volumes in the Chinese stock market," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 68(1), pages 145-152, March.
    25. Jie-Jun Tseng & Chih-Hao Lin & Chih-Ting Lin & Sun-Chong Wang & Sai-Ping Li, 2010. "Statistical properties of agent-based models in markets with continuous double auction mechanism," Papers 1002.0917, arXiv.org.
    26. Xavier Gabaix & Parameswaran Gopikrishnan & Vasiliki Plerou & H. Eugene Stanley, 2003. "A theory of power-law distributions in financial market fluctuations," Nature, Nature, vol. 423(6937), pages 267-270, May.
    27. Parameswaran Gopikrishnan & Martin Meyer & Luis A Nunes Amaral & H Eugene Stanley, 1998. "Inverse Cubic Law for the Probability Distribution of Stock Price Variations," Papers cond-mat/9803374, arXiv.org, revised May 1998.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han, Rui-Qi & Li, Ming-Xia & Chen, Wei & Zhou, Wei-Xing & Stanley, H. Eugene, 2019. "Structural properties of statistically validated empirical information networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 747-756.
    2. Zhang, Yongjie & Cao, Xing & He, Feng & Zhang, Wei, 2017. "Network topology analysis approach on China’s QFII stock investment behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 77-88.
    3. Lu, Shan & Zhao, Jichang & Wang, Huiwen & Ren, Ruoen, 2018. "Herding boosts too-connected-to-fail risk in stock market of China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 945-964.
    4. Xie, Wen-Jie & Li, Mu-Yao & Zhou, Wei-Xing, 2021. "Learning representation of stock traders and immediate price impacts," Emerging Markets Review, Elsevier, vol. 48(C).
    5. Wu, Ting & Wang, Yue & Li, Ming-Xia, 2017. "Post-hit dynamics of price limit hits in the Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 464-471.
    6. Sun, Xiao-Qian & Shen, Hua-Wei & Cheng, Xue-Qi & Zhang, Yuqing, 2017. "Detecting anomalous traders using multi-slice network analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 1-9.
    7. Li, Jie & Ren, Da & Feng, Xu & Zhang, Yongjie, 2016. "Network of listed companies based on common shareholders and the prediction of market volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 508-521.
    8. Ramin Salahshoor, 2018. "A Novel Approach for Circular Trade Detection in Mercantile Exchange," Journal of Finance and Economics Research, Geist Science, Iqra University, Faculty of Business Administration, vol. 3(1), pages 43-56, March.
    9. Shi, Fa-Bin & Sun, Xiao-Qian & Shen, Hua-Wei & Cheng, Xue-Qi, 2019. "Detect colluded stock manipulation via clique in trading network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 565-571.
    10. Biplab Bhattacharjee & Muhammad Shafi & Animesh Acharjee, 2016. "Investigating the Influence Relationship Models for Stocks in Indian Equity Market: A Weighted Network Modelling Study," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-33, November.
    11. Xiao-Qian Sun & Hua-Wei Shen & Xue-Qi Cheng & Yuqing Zhang, 2016. "Market Confidence Predicts Stock Price: Beyond Supply and Demand," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-10, July.
    12. Ouyang, Fang-Yan & Zheng, Bo & Jiang, Xiong-Fei, 2019. "Dynamic fluctuations of cross-correlations in multi-time scale," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 515-521.
    13. Fenghua Wen & Yujie Yuan & Wei-Xing Zhou, 2019. "Cross-shareholding networks and stock price synchronicity: Evidence from China," Papers 1903.01655, arXiv.org.
    14. Chen, Kun & Luo, Peng & Sun, Bianxia & Wang, Huaiqing, 2015. "Which stocks are profitable? A network method to investigate the effects of network structure on stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 224-235.
    15. Gang-Jin Wang & Chi Xie & H. Eugene Stanley, 2018. "Correlation Structure and Evolution of World Stock Markets: Evidence from Pearson and Partial Correlation-Based Networks," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 607-635, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Xiao-Qian & Cheng, Xue-Qi & Shen, Hua-Wei & Wang, Zhao-Yang, 2011. "Distinguishing manipulated stocks via trading network analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3427-3434.
    2. Xie, Wen-Jie & Li, Mu-Yao & Zhou, Wei-Xing, 2021. "Learning representation of stock traders and immediate price impacts," Emerging Markets Review, Elsevier, vol. 48(C).
    3. Gao-Feng Gu & Xiong Xiong & Hai-Chuan Xu & Wei Zhang & Yongjie Zhang & Wei Chen & Wei-Xing Zhou, 2021. "An empirical behavioral order-driven model with price limit rules," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-24, December.
    4. Xiao-Qian Sun & Xue-Qi Cheng & Hua-Wei Shen & Zhao-Yang Wang, 2011. "Distinguishing manipulated stocks via trading network analysis," Papers 1110.2260, arXiv.org.
    5. Sun, Xiao-Qian & Shen, Hua-Wei & Cheng, Xue-Qi & Zhang, Yuqing, 2017. "Detecting anomalous traders using multi-slice network analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 1-9.
    6. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2010. "Complex stock trading network among investors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4929-4941.
    7. Wei-Xing Zhou, 2012. "Universal price impact functions of individual trades in an order-driven market," Quantitative Finance, Taylor & Francis Journals, vol. 12(8), pages 1253-1263, June.
    8. Zhi-Qiang Jiang & Wen-Jie Xie & Xiong Xiong & Wei Zhang & Yong-Jie Zhang & W. -X. Zhou, 2012. "Trading networks, abnormal motifs and stock manipulation," Papers 1301.0007, arXiv.org.
    9. Wu, Ting & Wang, Yue & Li, Ming-Xia, 2017. "Post-hit dynamics of price limit hits in the Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 464-471.
    10. Fa-Bin Shi & Xiao-Qian Sun & Jin-Hua Gao & Li Xu & Hua-Wei Shen & Xue-Qi Cheng, 2019. "Anomaly detection in Bitcoin market via price return analysis," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-11, June.
    11. Han, Rui-Qi & Li, Ming-Xia & Chen, Wei & Zhou, Wei-Xing & Stanley, H. Eugene, 2019. "Structural properties of statistically validated empirical information networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 747-756.
    12. Gu, Gao-Feng & Xiong, Xiong & Zhang, Yong-Jie & Chen, Wei & Zhang, Wei & Zhou, Wei-Xing, 2016. "Stylized facts of price gaps in limit order books," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 48-58.
    13. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    14. Lautier, Delphine & Raynaud, Franck, 2011. "Statistical properties of derivatives: A journey in term structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2009-2019.
    15. Niu, Hongli & Wang, Weiqing & Zhang, Junhuan, 2019. "Recurrence duration statistics and time-dependent intrinsic correlation analysis of trading volumes: A study of Chinese stock indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 838-854.
    16. Zhang, Ting & Gu, Gao-Feng & Zhou, Wei-Xing, 2019. "Order imbalances and market efficiency: New evidence from the Chinese stock market," Emerging Markets Review, Elsevier, vol. 38(C), pages 458-467.
    17. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2013. "Limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1709-1742, November.
    18. Philipp Weber & Bernd Rosenow, 2006. "Large stock price changes: volume or liquidity?," Quantitative Finance, Taylor & Francis Journals, vol. 6(1), pages 7-14.
    19. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    20. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:419:y:2015:i:c:p:575-584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.