[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v129y2019i12p5364-5405.html
   My bibliography  Save this article

Non parametric estimation of the diffusion coefficients of a diffusion with jumps

Author

Listed:
  • Schmisser, Émeline
Abstract
In this article, we consider a jump diffusion process Xtt≥0, with drift function b, diffusion coefficient σ and jump coefficient ξ2. This process is observed at discrete times t=0,Δ,…,nΔ. The sampling interval Δ tends to 0 and the time interval nΔ tends to infinity. We assume that Xtt≥0 is ergodic, strictly stationary and exponentially β-mixing. We use a penalized least-square approach to compute adaptive estimators of the functions σ2+ξ2 and σ2. We provide bounds for the risks of the two estimators.

Suggested Citation

  • Schmisser, Émeline, 2019. "Non parametric estimation of the diffusion coefficients of a diffusion with jumps," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5364-5405.
  • Handle: RePEc:eee:spapps:v:129:y:2019:i:12:p:5364-5405
    DOI: 10.1016/j.spa.2019.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414919301395
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2019.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kappus, Johanna, 2014. "Adaptive nonparametric estimation for Lévy processes observed at low frequency," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 730-758.
    2. Mancini, Cecilia & Renò, Roberto, 2011. "Threshold estimation of Markov models with jumps and interest rate modeling," Journal of Econometrics, Elsevier, vol. 160(1), pages 77-92, January.
    3. Emeline Schmisser, 2012. "Non-parametric estimation of the diffusion coefficient from noisy data," Statistical Inference for Stochastic Processes, Springer, vol. 15(3), pages 193-223, October.
    4. Comte, F. & Rozenholc, Y., 2002. "Adaptive estimation of mean and volatility functions in (auto-)regressive models," Stochastic Processes and their Applications, Elsevier, vol. 97(1), pages 111-145, January.
    5. F. Comte & Y. Rozenholc, 2004. "A new algorithm for fixed design regression and denoising," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 56(3), pages 449-473, September.
    6. Arnaud Gloter & Dasha Loukianova & Hilmar Mai, 2016. "Jump filtering and efficient drift estimation for Lévy-Driven SDE’S," Working Papers 2016-04, Center for Research in Economics and Statistics.
    7. Shota Gugushvili, 2009. "Nonparametric estimation of the characteristic triplet of a discretely observed Lévy process," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(3), pages 321-343.
    8. Yasutaka Shimizu & Nakahiro Yoshida, 2006. "Estimation of Parameters for Diffusion Processes with Jumps from Discrete Observations," Statistical Inference for Stochastic Processes, Springer, vol. 9(3), pages 227-277, October.
    9. Masuda, Hiroki, 2007. "Ergodicity and exponential [beta]-mixing bounds for multidimensional diffusions with jumps," Stochastic Processes and their Applications, Elsevier, vol. 117(1), pages 35-56, January.
    10. Comte, F. & Genon-Catalot, V., 2009. "Nonparametric estimation for pure jump Lévy processes based on high frequency data," Stochastic Processes and their Applications, Elsevier, vol. 119(12), pages 4088-4123, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Bin & Zheng, Xu, 2022. "Testing for the presence of jump components in jump diffusion models," Journal of Econometrics, Elsevier, vol. 230(2), pages 483-509.
    2. Eddy Ella-Mintsa, 2024. "Nonparametric estimation of the diffusion coefficient from i.i.d. S.D.E. paths," Statistical Inference for Stochastic Processes, Springer, vol. 27(3), pages 585-640, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jakobsen, Nina Munkholt & Sørensen, Michael, 2019. "Estimating functions for jump–diffusions," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3282-3318.
    2. Kato, Kengo & Kurisu, Daisuke, 2020. "Bootstrap confidence bands for spectral estimation of Lévy densities under high-frequency observations," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1159-1205.
    3. Zhang, Zhimin & Yang, Hailiang, 2014. "Nonparametric estimation for the ruin probability in a Lévy risk model under low-frequency observation," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 168-177.
    4. Noh, Jungsik & Lee, Seung Y. & Lee, Sangyeol, 2012. "Quantile regression estimation for discretely observed SDE models with compound Poisson jumps," Economics Letters, Elsevier, vol. 117(3), pages 734-738.
    5. Lacour, Claire, 2008. "Nonparametric estimation of the stationary density and the transition density of a Markov chain," Stochastic Processes and their Applications, Elsevier, vol. 118(2), pages 232-260, February.
    6. Yiying Cheng & Yaozhong Hu & Hongwei Long, 2020. "Generalized moment estimators for $$\alpha $$α-stable Ornstein–Uhlenbeck motions from discrete observations," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 53-81, April.
    7. Emeline Schmisser, 2012. "Non-parametric estimation of the diffusion coefficient from noisy data," Statistical Inference for Stochastic Processes, Springer, vol. 15(3), pages 193-223, October.
    8. Shimizu, Yasutaka & Zhang, Zhimin, 2017. "Estimating Gerber–Shiu functions from discretely observed Lévy driven surplus," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 84-98.
    9. Chiara Amorino & Arnaud Gloter, 2021. "Joint estimation for volatility and drift parameters of ergodic jump diffusion processes via contrast function," Statistical Inference for Stochastic Processes, Springer, vol. 24(1), pages 61-148, April.
    10. Park, Joon Y. & Wang, Bin, 2021. "Nonparametric estimation of jump diffusion models," Journal of Econometrics, Elsevier, vol. 222(1), pages 688-715.
    11. Schmisser, Émeline, 2014. "Non-parametric adaptive estimation of the drift for a jump diffusion process," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 883-914.
    12. Mark Anthony Caruana, 2017. "Estimation of Lévy Processes via Stochastic Programming and Kalman Filtering," Methodology and Computing in Applied Probability, Springer, vol. 19(4), pages 1211-1225, December.
    13. Brockwell, Peter J. & Schlemm, Eckhard, 2013. "Parametric estimation of the driving Lévy process of multivariate CARMA processes from discrete observations," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 217-251.
    14. Johanna Kappus & Markus Reiß, 2010. "Estimation of the characteristics of a Lévy process observed at arbitrary frequency," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(s1), pages 314-328.
    15. Charlotte Dion & Sarah Lemler, 2020. "Nonparametric drift estimation for diffusions with jumps driven by a Hawkes process," Statistical Inference for Stochastic Processes, Springer, vol. 23(3), pages 489-515, October.
    16. Kappus, Johanna, 2014. "Adaptive nonparametric estimation for Lévy processes observed at low frequency," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 730-758.
    17. Reiß, Markus, 2013. "Testing the characteristics of a Lévy process," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2808-2828.
    18. Geffray, S. & Klutchnikoff, N. & Vimond, M., 2016. "Illumination problems in digital images. A statistical point of view," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 191-213.
    19. De Gregorio, A. & Iacus, S.M., 2013. "On a family of test statistics for discretely observed diffusion processes," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 292-316.
    20. Hacène Djellout & Hui Jiang, 2018. "Large Deviations Of The Threshold Estimator Of Integrated (Co-)Volatility Vector In The Presence Of Jumps," Post-Print hal-01147189, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:129:y:2019:i:12:p:5364-5405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.