[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v121y2011i1p109-134.html
   My bibliography  Save this article

The tail empirical process for long memory stochastic volatility sequences

Author

Listed:
  • Kulik, Rafal
  • Soulier, Philippe
Abstract
This paper describes the limiting behaviour of tail empirical processes associated with long memory stochastic volatility models. We show that such a process has dichotomous behaviour, according to an interplay between the Hurst parameter and the tail index. On the other hand, the tail empirical process with random levels never suffers from long memory. This is very desirable from a practical point of view, since such a process may be used to construct the Hill estimator of the tail index. To prove our results we need to establish new results for regularly varying distributions, which may be of independent interest.

Suggested Citation

  • Kulik, Rafal & Soulier, Philippe, 2011. "The tail empirical process for long memory stochastic volatility sequences," Stochastic Processes and their Applications, Elsevier, vol. 121(1), pages 109-134, January.
  • Handle: RePEc:eee:spapps:v:121:y:2011:i:1:p:109-134
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(10)00222-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Einmahl, J.H.J., 1992. "Limit theorems for tail processes with application to intermediate quantile estimation," Other publications TiSEM 063e51b0-445d-4764-96a2-4, Tilburg University, School of Economics and Management.
    2. Genest, Christian & Ghoudi, Kilani & Rémillard, Bruno, 1996. "A note on tightness," Statistics & Probability Letters, Elsevier, vol. 27(4), pages 331-339, May.
    3. Rohit Deo & Meng-Chen Hsieh & Clifford M. Hurvich & Philippe Soulier, 2007. "Long Memory in Nonlinear Processes," Papers 0706.1836, arXiv.org.
    4. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
    5. N/A, 1996. "Note:," Foreign Trade Review, , vol. 31(1-2), pages 1-1, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Durieu, Olivier & Wang, Yizao, 2022. "Phase transition for extremes of a stochastic model with long-range dependence and multiplicative noise," Stochastic Processes and their Applications, Elsevier, vol. 143(C), pages 55-88.
    2. Davis, Richard A. & Mikosch, Thomas & Zhao, Yuwei, 2013. "Measures of serial extremal dependence and their estimation," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2575-2602.
    3. Rafal Kulik & Philippe Soulier, 2013. "Heavy tailed time series with extremal independence," Papers 1307.1501, arXiv.org, revised Oct 2014.
    4. Xiao Wang & Lihong Wang, 2024. "A tail index estimation for long memory processes," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 87(8), pages 947-971, November.
    5. Rodríguez-Aguilar, Román & Cruz-Aké, Salvador & Venegas-Martínez, Francisco, 2014. "A Measure of Early Warning of Exchange-Rate Crises Based on the Hurst Coefficient and the Αlpha-Stable Parameter," MPRA Paper 59046, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Josselin Garnier & Knut Sølna, 2018. "Option pricing under fast-varying and rough stochastic volatility," Annals of Finance, Springer, vol. 14(4), pages 489-516, November.
    2. Kris James Mitchener & Matthew Jaremski, 2014. "The Evolution of Bank Supervision: Evidence from U.S. States," NBER Working Papers 20603, National Bureau of Economic Research, Inc.
    3. , G. & , & ,, 2008. "Non-Bayesian updating: A theoretical framework," Theoretical Economics, Econometric Society, vol. 3(2), June.
    4. Asai, Manabu & McAleer, Michael, 2015. "Forecasting co-volatilities via factor models with asymmetry and long memory in realized covariance," Journal of Econometrics, Elsevier, vol. 189(2), pages 251-262.
    5. Christensen, Bent Jesper & Nielsen, Morten Ørregaard & Zhu, Jie, 2010. "Long memory in stock market volatility and the volatility-in-mean effect: The FIEGARCH-M Model," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 460-470, June.
    6. Andrei Kapaev, 2013. "Remark on repo and options," Papers 1311.5211, arXiv.org.
    7. Daniel Sanches, 2016. "On the Inherent Instability of Private Money," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 20, pages 198-214, April.
    8. He, Changli & Teräsvirta, Timo, 1999. "Higher-order dependence in the general Power ARCH process and a special case," SSE/EFI Working Paper Series in Economics and Finance 315, Stockholm School of Economics.
    9. James J. McAndrews & William Roberds, 1999. "Payment intermediation and the origins of banking," Staff Reports 85, Federal Reserve Bank of New York.
    10. Allen Head & Junfeng Qiu, 2007. "Elastic Money, Inflation, And Interest Rate Policy," Working Paper 1152, Economics Department, Queen's University.
    11. Einmahl, J.H.J. & de Haan, L.F.M. & Piterbarg, V.I., 2001. "Nonparametric estimation of the spectral measure of an extreme value distribution," Other publications TiSEM c3485b9b-a0bd-456f-9baa-0, Tilburg University, School of Economics and Management.
    12. Fong, Wai Mun, 1997. "Robust beta estimation: Some empirical evidence," Review of Financial Economics, Elsevier, vol. 6(2), pages 167-186.
    13. Sheri M. Markose, 2005. "Computability and Evolutionary Complexity: Markets as Complex Adaptive Systems (CAS)," Economic Journal, Royal Economic Society, vol. 115(504), pages 159-192, 06.
    14. Maria Kalli & Jim Griffin, 2015. "Flexible Modeling of Dependence in Volatility Processes," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 102-113, January.
    15. Ricardo de O. Cavalcanti & Andres Erosa & Ted Temzelides, 1999. "Private Money and Reserve Management in a Random-Matching Model," Journal of Political Economy, University of Chicago Press, vol. 107(5), pages 929-945, October.
    16. David E. Allen & Michael McAleer & Marcel Scharth, 2009. "Realized Volatility Risk," CARF F-Series CARF-F-197, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Jan 2010.
    17. Santiago Moreno-Bromberg & Luca Taschini, 2011. "Pollution permits, Strategic Trading and Dynamic Technology Adoption," Papers 1103.2914, arXiv.org.
    18. Steven Brams & D. Kilgour, 1998. "Backward Induction Is Not Robust: The Parity Problem and the Uncertainty Problem," Theory and Decision, Springer, vol. 45(3), pages 263-289, December.
    19. Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2017. "Realized stochastic volatility with general asymmetry and long memory," Journal of Econometrics, Elsevier, vol. 199(2), pages 202-212.
    20. Junfeng Qiu, 2011. "Bank money, aggregate liquidity, and asset prices," Annals of Economics and Finance, Society for AEF, vol. 12(2), pages 295-346, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:121:y:2011:i:1:p:109-134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.