[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v109y2004i1p79-111.html
   My bibliography  Save this article

Russian and American put options under exponential phase-type Lévy models

Author

Listed:
  • Asmussen, Søren
  • Avram, Florin
  • Pistorius, Martijn R.
Abstract
Consider the American put and Russian option (Ann. Appl. Probab. 3 (1993) 603; Theory Probab. Appl. 39 (1994) 103; Ann. Appl. Probab. 3 (1993) 641) with the stock price modeled as an exponential Lévy process. We find an explicit expression for the price in the dense class of Lévy processes with phase-type jumps in both directions. The solution rests on the reduction to the first passage time problem for (reflected) Lévy processes and on an explicit solution of the latter in the phase-type case via martingale stopping and Wiener-Hopf factorization. The same type of approach is also applied to the more general class of regime switching Lévy processes with phase-type jumps.

Suggested Citation

  • Asmussen, Søren & Avram, Florin & Pistorius, Martijn R., 2004. "Russian and American put options under exponential phase-type Lévy models," Stochastic Processes and their Applications, Elsevier, vol. 109(1), pages 79-111, January.
  • Handle: RePEc:eee:spapps:v:109:y:2004:i:1:p:79-111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(03)00116-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. Avram, Florin & Chan, Terence & Usabel, Miguel, 0. "On the valuation of constant barrier options under spectrally one-sided exponential Lévy models and Carr's approximation for American puts," Stochastic Processes and their Applications, Elsevier, vol. 100(1-2), pages 75-107, July.
    3. Carr, Peter, 1998. "Randomization and the American Put," The Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 597-626.
    4. Rama Cont & Marc Potters & Jean-Philippe Bouchaud, 1997. "Scaling in stock market data: stable laws and beyond," Science & Finance (CFM) working paper archive 9705087, Science & Finance, Capital Fund Management.
    5. Eugene F. Fama, 1965. "Portfolio Analysis in a Stable Paretian Market," Management Science, INFORMS, vol. 11(3), pages 404-419, January.
    6. Asmussen, Soren & Avram, Florin & Usabel, Miguel, 2002. "Erlangian Approximations for Finite-Horizon Ruin Probabilities," ASTIN Bulletin, Cambridge University Press, vol. 32(2), pages 267-281, November.
    7. Eugene F. Fama, 1963. "Mandelbrot and the Stable Paretian Hypothesis," The Journal of Business, University of Chicago Press, vol. 36, pages 420-420.
    8. Benoit Mandelbrot, 1963. "New Methods in Statistical Economics," Journal of Political Economy, University of Chicago Press, vol. 71(5), pages 421-421.
    9. Ernesto Mordecki, 2002. "Optimal stopping and perpetual options for Lévy processes," Finance and Stochastics, Springer, vol. 6(4), pages 473-493.
    10. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    11. Søren Asmussen, 2000. "Matrix‐analytic Models and their Analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(2), pages 193-226, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philipp N. Baecker, 2007. "Real Options and Intellectual Property," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-540-48264-2, October.
    2. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    3. Ortobelli, Sergio & Rachev, Svetlozar T. & Fabozzi, Frank J., 2010. "Risk management and dynamic portfolio selection with stable Paretian distributions," Journal of Empirical Finance, Elsevier, vol. 17(2), pages 195-211, March.
    4. Cornelis A. Los, 2005. "The Degree of Stability of Price Diffusion," Finance 0508006, University Library of Munich, Germany.
    5. Sergio Ortobelli Lozza & Tommaso Lando & Filomena Petronio & Tomáš Tichý, 2016. "Asymptotic Multivariate Dominance: A Financial Application," Methodology and Computing in Applied Probability, Springer, vol. 18(4), pages 1097-1115, December.
    6. Mouck, T., 1998. "Capital markets research and real world complexity: The emerging challenge of chaos theory," Accounting, Organizations and Society, Elsevier, vol. 23(2), pages 189-203, February.
    7. De Giovanni, Domenico & Ortobelli, Sergio & Rachev, Svetlozar, 2008. "Delta hedging strategies comparison," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1615-1631, March.
    8. Bao, Te & Diks, Cees & Li, Hao, 2018. "A generalized CAPM model with asymmetric power distributed errors with an application to portfolio construction," Economic Modelling, Elsevier, vol. 68(C), pages 611-621.
    9. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    10. Leippold, Markus & Vasiljević, Nikola, 2017. "Pricing and disentanglement of American puts in the hyper-exponential jump-diffusion model," Journal of Banking & Finance, Elsevier, vol. 77(C), pages 78-94.
    11. Young Kim & Rosella Giacometti & Svetlozar Rachev & Frank Fabozzi & Domenico Mignacca, 2012. "Measuring financial risk and portfolio optimization with a non-Gaussian multivariate model," Annals of Operations Research, Springer, vol. 201(1), pages 325-343, December.
    12. Anand, Abhinav & Li, Tiantian & Kurosaki, Tetsuo & Kim, Young Shin, 2016. "Foster–Hart optimal portfolios," Journal of Banking & Finance, Elsevier, vol. 68(C), pages 117-130.
    13. Sabiou M. Inoua & Vernon L. Smith, 2022. "Perishable goods versus re-tradable assets: A theoretical reappraisal of a fundamental dichotomy," Chapters, in: Sascha Füllbrunn & Ernan Haruvy (ed.), Handbook of Experimental Finance, chapter 15, pages 162-171, Edward Elgar Publishing.
    14. Dilip B. Madan & Yazid M. Sharaiha, 2015. "Option overlay strategies," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1175-1190, July.
    15. Lux, Thomas & Alfarano, Simone, 2016. "Financial power laws: Empirical evidence, models, and mechanisms," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 3-18.
    16. Phoebe Koundouri & Nikolaos Kourogenis & Nikitas Pittis, 2016. "Statistical Modeling Of Stock Returns: Explanatory Or Descriptive? A Historical Survey With Some Methodological Reflections," Journal of Economic Surveys, Wiley Blackwell, vol. 30(1), pages 149-164, February.
    17. Broze, Laurence & Scaillet, Olivier & Zakoian, Jean-Michel, 1995. "Testing for continuous-time models of the short-term interest rate," Journal of Empirical Finance, Elsevier, vol. 2(3), pages 199-223, September.
    18. Grobys, Klaus, 2023. "Correlation versus co-fractality: Evidence from foreign-exchange-rate variances," International Review of Financial Analysis, Elsevier, vol. 86(C).
    19. Michael R. Powers & Thomas Y. Powers & Siwei Gao, 2012. "Risk Finance for Catastrophe Losses with Pareto‐Calibrated Lévy‐Stable Severities," Risk Analysis, John Wiley & Sons, vol. 32(11), pages 1967-1977, November.
    20. W. Walls, 2005. "Modeling Movie Success When ‘Nobody Knows Anything’: Conditional Stable-Distribution Analysis Of Film Returns," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 29(3), pages 177-190, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:109:y:2004:i:1:p:79-111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.