[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/matsoc/v79y2016icp20-29.html
   My bibliography  Save this article

On continuous multi-utility representations of semi-closed and closed preorders

Author

Listed:
  • Bosi, Gianni
  • Herden, Gerhard
Abstract
On the basis of the classical continuous multi-utility representation theorem of Levin on locally compact and σ-compact Hausdorff spaces, we present necessary and sufficient conditions on a topological space (X,t) under which every semi-closed and closed preorder respectively admits a continuous multi-utility representation. This discussion provides the fundaments of a mainly topological theory that systematically combines topological and order theoretic aspects of the continuous multi-utility representation problem.

Suggested Citation

  • Bosi, Gianni & Herden, Gerhard, 2016. "On continuous multi-utility representations of semi-closed and closed preorders," Mathematical Social Sciences, Elsevier, vol. 79(C), pages 20-29.
  • Handle: RePEc:eee:matsoc:v:79:y:2016:i:c:p:20-29
    DOI: 10.1016/j.mathsocsci.2015.10.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165489615000906
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.mathsocsci.2015.10.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pivato, Marcus, 2013. "Multiutility representations for incomplete difference preorders," Mathematical Social Sciences, Elsevier, vol. 66(3), pages 196-220.
    2. Juan Dubra & Fabio Maccheroni & Efe A. Ok, 2004. "Expected Utility Without the Completeness Axiom," Yale School of Management Working Papers ysm404, Yale School of Management.
    3. Herden, G. & Mehta, G. B., 2004. "The Debreu Gap Lemma and some generalizations," Journal of Mathematical Economics, Elsevier, vol. 40(7), pages 747-769, November.
    4. Nosratabadi, Hassan, 2014. "Partially upper continuous preferences: Representation and maximal elements," Economics Letters, Elsevier, vol. 125(3), pages 408-410.
    5. Dubra, Juan & Maccheroni, Fabio & Ok, Efe A., 2004. "Expected utility theory without the completeness axiom," Journal of Economic Theory, Elsevier, vol. 115(1), pages 118-133, March.
    6. Mas-Colell, Andreu & Whinston, Michael D. & Green, Jerry R., 1995. "Microeconomic Theory," OUP Catalogue, Oxford University Press, number 9780195102680.
    7. Bosi, Gianni & Herden, Gerhard, 2012. "Continuous multi-utility representations of preorders," Journal of Mathematical Economics, Elsevier, vol. 48(4), pages 212-218.
    8. Ok, Efe A., 2002. "Utility Representation of an Incomplete Preference Relation," Journal of Economic Theory, Elsevier, vol. 104(2), pages 429-449, June.
    9. Herden, G., 1990. "On a lifting theorem of Nachbin," Mathematical Social Sciences, Elsevier, vol. 19(1), pages 37-44, February.
    10. Galaabaatar, Tsogbadral & Karni, Edi, 2012. "Expected multi-utility representations," Mathematical Social Sciences, Elsevier, vol. 64(3), pages 242-246.
    11. Özgür Evren, 2008. "On the existence of expected multi-utility representations," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 35(3), pages 575-592, June.
    12. Evren, Özgür & Ok, Efe A., 2011. "On the multi-utility representation of preference relations," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 554-563.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Knoblauch, Vicki, 2016. "Elections generate all binary relations on infinite sets," Mathematical Social Sciences, Elsevier, vol. 84(C), pages 105-108.
    2. McCarthy, David & Mikkola, Kalle & Thomas, Teruji, 2021. "Expected utility theory on mixture spaces without the completeness axiom," Journal of Mathematical Economics, Elsevier, vol. 97(C).
    3. Gianni Bosi & Asier Estevan & Armajac Raventós-Pujol, 2020. "Topologies for semicontinuous Richter–Peleg multi-utilities," Theory and Decision, Springer, vol. 88(3), pages 457-470, April.
    4. Pedro Hack & Daniel A. Braun & Sebastian Gottwald, 2023. "The classification of preordered spaces in terms of monotones: complexity and optimization," Theory and Decision, Springer, vol. 94(4), pages 693-720, May.
    5. Gianni Bosi & Laura Franzoi, 2023. "A simple characterization of the existence of upper semicontinuous order-preserving functions," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 11(2), pages 203-210, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcus Pivato, 2020. "Subjective expected utility with a spectral state space," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 69(2), pages 249-313, March.
    2. McCarthy, David & Mikkola, Kalle & Thomas, Teruji, 2021. "Expected utility theory on mixture spaces without the completeness axiom," Journal of Mathematical Economics, Elsevier, vol. 97(C).
    3. Bosi, Gianni & Herden, Gerhard, 2014. "Topological spaces for which every closed and semi-closed preorder respectively admits a continuous multi-utility representation," MPRA Paper 53404, University Library of Munich, Germany.
    4. Cosimo Munari, 2020. "Multi-utility representations of incomplete preferences induced by set-valued risk measures," Papers 2009.04151, arXiv.org.
    5. Pivato, Marcus, 2013. "Multiutility representations for incomplete difference preorders," Mathematical Social Sciences, Elsevier, vol. 66(3), pages 196-220.
    6. Özgür Evren, 2012. "Scalarization Methods and Expected Multi-Utility Representations," Working Papers w0174, Center for Economic and Financial Research (CEFIR).
    7. Cosimo Munari, 2021. "Multi-utility representations of incomplete preferences induced by set-valued risk measures," Finance and Stochastics, Springer, vol. 25(1), pages 77-99, January.
    8. Evren, Özgür, 2014. "Scalarization methods and expected multi-utility representations," Journal of Economic Theory, Elsevier, vol. 151(C), pages 30-63.
    9. Bosi, Gianni & Herden, Gerhard, 2012. "Continuous multi-utility representations of preorders," Journal of Mathematical Economics, Elsevier, vol. 48(4), pages 212-218.
    10. Pivato, Marcus, 2009. "Social choice with approximate interpersonal comparisons of well-being," MPRA Paper 17060, University Library of Munich, Germany.
    11. Gorno, Leandro & Rivello, Alessandro T., 2023. "A maximum theorem for incomplete preferences," Journal of Mathematical Economics, Elsevier, vol. 106(C).
    12. Dino Borie, 2020. "Finite expected multi-utility representation," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 8(2), pages 325-331, October.
    13. Quartieri, Federico, 2022. "A unified view of the existence of maximals," Journal of Mathematical Economics, Elsevier, vol. 99(C).
    14. Alcantud, José Carlos R. & Bosi, Gianni & Zuanon, Magalì, 2013. "Representations of preorders by strong multi-objective functions," MPRA Paper 52329, University Library of Munich, Germany.
    15. A. Zapata & A. M. Mármol & L. Monroy & M. A. Caraballo, 2019. "A Maxmin Approach for the Equilibria of Vector-Valued Games," Group Decision and Negotiation, Springer, vol. 28(2), pages 415-432, April.
    16. Weixuan Xia, 2023. "Optimal Consumption--Investment Problems under Time-Varying Incomplete Preferences," Papers 2312.00266, arXiv.org.
    17. McCarthy, David & Mikkola, Kalle & Thomas, Teruji, 2020. "Utilitarianism with and without expected utility," Journal of Mathematical Economics, Elsevier, vol. 87(C), pages 77-113.
    18. Eric Danan & Thibault Gajdos & Jean-Marc Tallon, 2015. "Harsanyi's Aggregation Theorem with Incomplete Preferences," American Economic Journal: Microeconomics, American Economic Association, vol. 7(1), pages 61-69, February.
    19. Susumu Cato, 2013. "Quasi-decisiveness, quasi-ultrafilter, and social quasi-orderings," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 41(1), pages 169-202, June.
    20. Leandro Nascimento, 2011. "Remarks on the consumer problem under incomplete preferences," Theory and Decision, Springer, vol. 70(1), pages 95-110, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matsoc:v:79:y:2016:i:c:p:20-29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505565 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.