[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v110y2024ics0304406823001143.html
   My bibliography  Save this article

Stable and weakly additive cost sharing in shortest path problems

Author

Listed:
  • Bahel, Eric
  • Gómez-Rúa, María
  • Vidal-Puga, Juan
Abstract
In a shortest path problem, agents seek to ship their respective demands; and the cost on a given arc is linear in the flow. Previous works have proposed cost allocations falling in the core of the associated cooperative game. The present work combines core selection with weak versions of the additivity axiom, which allows to characterize a new family of rules. The demander rule charges each demander the cost of their shortest path, and the supplier rule charges the cost of the second-cheapest path while splitting the excess payment equally between access suppliers. With three or more agents, the demander rule is characterized by core selection and a specific version of cost additivity. Convex combinations of the demander rule and the supplier rule are axiomatized using core selection, a second version of cost additivity, and two additional axioms that ensure the fair compensation of intermediaries. With three or more agents, the demander rule is characterized by core selection and a specific version of cost additivity. Finally, convex combinations of the demander rule and the supplier rule are axiomatized using core selection, a second version of cost additivity, and two additional fairness properties.

Suggested Citation

  • Bahel, Eric & Gómez-Rúa, María & Vidal-Puga, Juan, 2024. "Stable and weakly additive cost sharing in shortest path problems," Journal of Mathematical Economics, Elsevier, vol. 110(C).
  • Handle: RePEc:eee:mateco:v:110:y:2024:i:c:s0304406823001143
    DOI: 10.1016/j.jmateco.2023.102921
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304406823001143
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmateco.2023.102921?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dutta, Bhaskar & Mishra, Debasis, 2012. "Minimum cost arborescences," Games and Economic Behavior, Elsevier, vol. 74(1), pages 120-143.
    2. Dutta, Bhaskar & Kar, Anirban, 2004. "Cost monotonicity, consistency and minimum cost spanning tree games," Games and Economic Behavior, Elsevier, vol. 48(2), pages 223-248, August.
    3. Vito Fragnelli & Ignacio García-Jurado & Luciano Méndez-Naya, 2000. "On shortest path games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 52(2), pages 251-264, November.
    4. Bergantinos, Gustavo & Vidal-Puga, Juan J., 2007. "A fair rule in minimum cost spanning tree problems," Journal of Economic Theory, Elsevier, vol. 137(1), pages 326-352, November.
    5. Massol, Olivier & Tchung-Ming, Stéphane, 2010. "Cooperation among liquefied natural gas suppliers: Is rationalization the sole objective?," Energy Economics, Elsevier, vol. 32(4), pages 933-947, July.
    6. Eric Bahel & Christian Trudeau, 2017. "Minimum incoming cost rules for arborescences," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 49(2), pages 287-314, August.
    7. Bahel, Eric & Trudeau, Christian, 2014. "Stable lexicographic rules for shortest path games," Economics Letters, Elsevier, vol. 125(2), pages 266-269.
    8. Bergantiños, Gustavo & Vidal-Puga, Juan, 2009. "Additivity in minimum cost spanning tree problems," Journal of Mathematical Economics, Elsevier, vol. 45(1-2), pages 38-42, January.
    9. Rosenthal, Edward C., 2017. "A cooperative game approach to cost allocation in a rapid-transit network," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 64-77.
    10. Mark Voorneveld & Sofia Grahn, 2002. "Cost allocation in shortest path games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 56(2), pages 323-340, November.
    11. Tijs, Stef & Borm, Peter & Lohmann, Edwin & Quant, Marieke, 2011. "An average lexicographic value for cooperative games," European Journal of Operational Research, Elsevier, vol. 213(1), pages 210-220, August.
    12. Mohammad S. Roni & Sandra D. Eksioglu & Kara G. Cafferty & Jacob J. Jacobson, 2017. "A multi-objective, hub-and-spoke model to design and manage biofuel supply chains," Annals of Operations Research, Springer, vol. 249(1), pages 351-380, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bahel, Eric & Gómez-Rúa, María & Vidal-Puga, Juan, 2024. "Merge-proofness and cost solidarity in shortest path games," MPRA Paper 120606, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bahel, Eric & Gómez-Rúa, María & Vidal-Puga, Juan, 2020. "Stability in shortest path problems," MPRA Paper 98504, University Library of Munich, Germany.
    2. Bergantiños, Gustavo & Vidal-Puga, Juan, 2020. "Cooperative games for minimum cost spanning tree problems," MPRA Paper 104911, University Library of Munich, Germany.
    3. Bahel, Eric, 2021. "Hyperadditive games and applications to networks or matching problems," Journal of Economic Theory, Elsevier, vol. 191(C).
    4. Trudeau, Christian & Vidal-Puga, Juan, 2017. "On the set of extreme core allocations for minimal cost spanning tree problems," Journal of Economic Theory, Elsevier, vol. 169(C), pages 425-452.
    5. Andreas Darmann & Christian Klamler & Ulrich Pferschy, 2015. "Sharing the Cost of a Path," Studies in Microeconomics, , vol. 3(1), pages 1-12, June.
    6. Hernández, Penélope & Peris, Josep E. & Silva-Reus, José A., 2016. "Strategic sharing of a costly network," Journal of Mathematical Economics, Elsevier, vol. 66(C), pages 72-82.
    7. Eric Bahel & Christian Trudeau, 2017. "Minimum incoming cost rules for arborescences," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 49(2), pages 287-314, August.
    8. Bergantiños, Gustavo & Vidal-Puga, Juan, 2010. "Realizing fair outcomes in minimum cost spanning tree problems through non-cooperative mechanisms," European Journal of Operational Research, Elsevier, vol. 201(3), pages 811-820, March.
    9. Streekstra, Leanne & Trudeau, Christian, 2020. "Stable source connection and assignment problems as multi-period shortest path problems," Discussion Papers on Economics 7/2020, University of Southern Denmark, Department of Economics.
    10. Gustavo Bergantiños & María Gómez-Rúa, 2015. "An axiomatic approach in minimum cost spanning tree problems with groups," Annals of Operations Research, Springer, vol. 225(1), pages 45-63, February.
    11. Bahel, Eric & Gómez-Rúa, María & Vidal-Puga, Juan, 2024. "Merge-proofness and cost solidarity in shortest path games," MPRA Paper 120606, University Library of Munich, Germany.
    12. Gustavo Bergantiños & Juan Vidal-Puga, 2021. "A review of cooperative rules and their associated algorithms for minimum-cost spanning tree problems," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(1), pages 73-100, March.
    13. Gustavo Bergantiños & Leticia Lorenzo, 2021. "Cost additive rules in minimum cost spanning tree problems with multiple sources," Annals of Operations Research, Springer, vol. 301(1), pages 5-15, June.
    14. Gustavo Bergantiños & Youngsub Chun & Eunju Lee & Leticia Lorenzo, 2022. "The Folk Rule for Minimum Cost Spanning Tree Problems with Multiple Sources," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 24(01), pages 1-36, March.
    15. Eric Bahel & Christian Trudeau, 2016. "From spanning trees to arborescences: new and extended cost sharing solutions," Working Papers 1601, University of Windsor, Department of Economics.
    16. Bergantiños, G. & Gómez-Rúa, M. & Llorca, N. & Pulido, M. & Sánchez-Soriano, J., 2014. "A new rule for source connection problems," European Journal of Operational Research, Elsevier, vol. 234(3), pages 780-788.
    17. Bergantiños, Gustavo & Kar, Anirban, 2010. "On obligation rules for minimum cost spanning tree problems," Games and Economic Behavior, Elsevier, vol. 69(2), pages 224-237, July.
    18. Gustavo Bergantiños & María Gómez-Rúa, 2010. "Minimum cost spanning tree problems with groups," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 43(2), pages 227-262, May.
    19. María Gómez-Rúa & Juan Vidal-Puga, 2017. "A monotonic and merge-proof rule in minimum cost spanning tree situations," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 63(3), pages 813-826, March.
    20. Bergantiños, Gustavo & Martínez, Ricardo, 2014. "Cost allocation in asymmetric trees," European Journal of Operational Research, Elsevier, vol. 237(3), pages 975-987.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:110:y:2024:i:c:s0304406823001143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.