[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v82y2023ics0301420723002271.html
   My bibliography  Save this article

Measuring carbon emissions performance of Japan's metal industry: Energy inputs, agglomeration, and the potential for green recovery reduction

Author

Listed:
  • Honma, Satoshi
  • Ushifusa, Yoshiaki
  • Okamura, Soyoka
  • Vandercamme, Lilu
Abstract
This study measures the total factor carbnon dioxide (CO2) emissions performance of the metal industry, iron and steel, nonferrous metal, and metal processing industries in 39 Japanese prefectures from 2008 to 2019. The true fixed-effects panel stochastic frontier model identifies regional carbon efficiency as well as the inefficiency determinants. The main results are as follows. First, a decrease in the coal ratio and an increase in the electricity ratio in total energy consumption improves efficiency. This result suggests that electrification in the metal industry, especially conversion from blast furnaces to electric furnaces in the iron and steel industry, contributes to reducing carbon emissions. Second, industrial agglomeration improves carbon emissions performance in the metal industry. This implies that agglomeration and decarbonization policies focusing on there are more effective, rather than a uniform national policy. Third, compared to the cumulative CO2 emissions over the sample period, 49,017 × 103 tons, the cumulative CO2 mitigation potential is 29,703 × 103 tons, indicating that CO2 emissions can be reduced by 60.6% without affecting the output. Forth, to examine the green economic recovery with efficiency in Japan's metal industry after COVID-19, we present a simple scenario analysis where a k% replacement coal ratio with an electricity ratio in total energy consumption, assuming that each prefecture will achieve the maximum CO2 emission amount during the sample period. By replacing 10% of the coal ratio with the electricity ratio, CO2 emissions can be reduced by 23.0%. In the case of a 20% replacement, CO2 emissions can be reduced by 33.0%. Our results show that Japan's targets in the post-COVID-19 green recovery process should be a decrease in coal consumption, an increase in electricity, and industrial agglomeration.

Suggested Citation

  • Honma, Satoshi & Ushifusa, Yoshiaki & Okamura, Soyoka & Vandercamme, Lilu, 2023. "Measuring carbon emissions performance of Japan's metal industry: Energy inputs, agglomeration, and the potential for green recovery reduction," Resources Policy, Elsevier, vol. 82(C).
  • Handle: RePEc:eee:jrpoli:v:82:y:2023:i:c:s0301420723002271
    DOI: 10.1016/j.resourpol.2023.103519
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420723002271
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2023.103519?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Chao & Huang, Jian-Bai & Wang, Miao, 2018. "Analysis of green total-factor productivity in China's regional metal industry: A meta-frontier approach," Resources Policy, Elsevier, vol. 58(C), pages 219-229.
    2. Honma, Satoshi & Hu, Jin-Li, 2009. "Total-factor energy productivity growth of regions in Japan," Energy Policy, Elsevier, vol. 37(10), pages 3941-3950, October.
    3. Ang, B.W., 2015. "LMDI decomposition approach: A guide for implementation," Energy Policy, Elsevier, vol. 86(C), pages 233-238.
    4. Wang, Zhao-Hua & Zeng, Hua-Lin & Wei, Yi-Ming & Zhang, Yi-Xiang, 2012. "Regional total factor energy efficiency: An empirical analysis of industrial sector in China," Applied Energy, Elsevier, vol. 97(C), pages 115-123.
    5. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe, 2020. "The post COVID-19 green recovery in practice: Assessing the profitability of a policy proposal on residential photovoltaic plants," Energy Policy, Elsevier, vol. 147(C).
    6. Xiaoke Zhao & Xuhui Ding & Liang Li, 2021. "Research on Environmental Regulation, Technological Innovation and Green Transformation of Manufacturing Industry in the Yangtze River Economic Belt," Sustainability, MDPI, vol. 13(18), pages 1-15, September.
    7. Ann Harrison & Leslie A. Martin & Shanthi Nataraj, 2017. "Green Industrial Policy in Emerging Markets," Annual Review of Resource Economics, Annual Reviews, vol. 9(1), pages 253-274, October.
    8. Yuli Shan & Jiamin Ou & Daoping Wang & Zhao Zeng & Shaohui Zhang & Dabo Guan & Klaus Hubacek, 2021. "Impacts of COVID-19 and fiscal stimuli on global emissions and the Paris Agreement," Nature Climate Change, Nature, vol. 11(3), pages 200-206, March.
    9. Ann Harrison & Leslie A. Martin & Shanthi Nataraj, 2017. "Green Industrial Policy in Emerging Markets," Annual Review of Economics, Annual Reviews, vol. 9(1), pages 253-274, October.
    10. Krugman, Paul, 1991. "Increasing Returns and Economic Geography," Journal of Political Economy, University of Chicago Press, vol. 99(3), pages 483-499, June.
    11. Tan, Xiujie & Choi, Yongrok & Wang, Banban & Huang, Xiaoqi, 2020. "Does China's carbon regulatory policy improve total factor carbon efficiency? A fixed-effect panel stochastic frontier analysis," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    12. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    13. Shao, Liuguo & He, Yingying & Feng, Chao & Zhang, Shijing, 2016. "An empirical analysis of total-factor productivity in 30 sub-sub-sectors of China's nonferrous metal industry," Resources Policy, Elsevier, vol. 50(C), pages 264-269.
    14. Zhou, P. & Ang, B.W. & Zhou, D.Q., 2012. "Measuring economy-wide energy efficiency performance: A parametric frontier approach," Applied Energy, Elsevier, vol. 90(1), pages 196-200.
    15. Olga Chiappinelli & Timo Gerres & Karsten Neuhoff & Frederik Lettow & Heleen de Coninck & Balázs Felsmann & Eugénie Joltreau & Gauri Khandekar & Pedro Linares & Jörn Richstein & Aleksander Śniegocki &, 2021. "A green COVID-19 recovery of the EU basic materials sector: identifying potentials, barriers and policy solutions," Climate Policy, Taylor & Francis Journals, vol. 21(10), pages 1328-1346, November.
    16. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    17. Edward B. Barbier, 2020. "Greening the Post-pandemic Recovery in the G20," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 685-703, August.
    18. Liu, Zhao & Zhang, Huan & Zhang, Yue-Jun & Zhu, Tian-Tian, 2020. "How does industrial policy affect the eco-efficiency of industrial sector? Evidence from China," Applied Energy, Elsevier, vol. 272(C).
    19. Wang, Miao & Feng, Chao, 2017. "Analysis of energy-related CO2 emissions in China’s mining industry: Evidence and policy implications," Resources Policy, Elsevier, vol. 53(C), pages 77-87.
    20. Lu, Yuchen & Gao, Yuqiang & Zhang, Yu & Wang, Junrong, 2022. "Can the green finance policy force the green transformation of high-polluting enterprises? A quasi-natural experiment based on “Green Credit Guidelines”," Energy Economics, Elsevier, vol. 114(C).
    21. Hu, Jin-Li & Wang, Shih-Chuan, 2006. "Total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 34(17), pages 3206-3217, November.
    22. Mengqi Gong & Zhe You & Linting Wang & Jinhua Cheng, 2020. "Environmental Regulation, Trade Comparative Advantage, and the Manufacturing Industry’s Green Transformation and Upgrading," IJERPH, MDPI, vol. 17(8), pages 1-17, April.
    23. Honma, Satoshi & Hu, Jin-Li, 2014. "A panel data parametric frontier technique for measuring total-factor energy efficiency: An application to Japanese regions," Energy, Elsevier, vol. 78(C), pages 732-739.
    24. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    25. Ren, Xiaohang & Zhang, Xiao & Yan, Cheng & Gozgor, Giray, 2022. "Climate policy uncertainty and firm-level total factor productivity: Evidence from China," Energy Economics, Elsevier, vol. 113(C).
    26. Qi, Xiaoyan & Guo, Pibin & Guo, Yanshan & Liu, Xiuli & Zhou, Xijun, 2020. "Understanding energy efficiency and its drivers: An empirical analysis of China’s 14 coal intensive industries," Energy, Elsevier, vol. 190(C).
    27. Lindmark, Magnus & Bergquist, Ann-Kristin & Andersson, Lars Fredrik, 2011. "Energy transition, carbon dioxide reduction and output growth in the Swedish pulp and paper industry: 1973-2006," Energy Policy, Elsevier, vol. 39(9), pages 5449-5456, September.
    28. Xiaohang Ren & Cheng Cheng & Zhen Wang & Cheng Yan, 2021. "Spillover and dynamic effects of energy transition and economic growth on carbon dioxide emissions for the European Union: A dynamic spatial panel model," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(1), pages 228-242, January.
    29. Willam Greene, 2005. "Fixed and Random Effects in Stochastic Frontier Models," Journal of Productivity Analysis, Springer, vol. 23(1), pages 7-32, January.
    30. Honma, Satoshi & Hu, Jin-Li, 2008. "Total-factor energy efficiency of regions in Japan," Energy Policy, Elsevier, vol. 36(2), pages 821-833, February.
    31. Song, Yi & Huang, Jian-Bai & Feng, Chao, 2018. "Decomposition of energy-related CO2 emissions in China's iron and steel industry: A comprehensive decomposition framework," Resources Policy, Elsevier, vol. 59(C), pages 103-116.
    32. Feng, Chao & Huang, Jian-Bai & Wang, Miao, 2018. "The driving forces and potential mitigation of energy-related CO2 emissions in China's metal industry," Resources Policy, Elsevier, vol. 59(C), pages 487-494.
    33. Wu, Rongxin & Lin, Boqiang, 2021. "Does industrial agglomeration improve effective energy service: An empirical study of China’s iron and steel industry," Applied Energy, Elsevier, vol. 295(C).
    34. Fare, Rolf & Grosskopf, Shawna & Noh, Dong-Woon & Weber, William, 2005. "Characteristics of a polluting technology: theory and practice," Journal of Econometrics, Elsevier, vol. 126(2), pages 469-492, June.
    35. Wang, Q.W. & Zhou, P. & Shen, N. & Wang, S.S., 2013. "Measuring carbon dioxide emission performance in Chinese provinces: A parametric approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 324-330.
    36. Timothy J. Coelli & D.S. Prasada Rao & Christopher J. O’Donnell & George E. Battese, 2005. "An Introduction to Efficiency and Productivity Analysis," Springer Books, Springer, edition 0, number 978-0-387-25895-9, December.
    37. Zhong, Mei-Rui & Xiao, Shun-Li & Zou, Han & Zhang, Yi-Jun & Song, Yi, 2021. "The effects of technical change on carbon intensity in China’s non-ferrous metal industry," Resources Policy, Elsevier, vol. 73(C).
    38. Wang, Xiong & Wang, Xiao & Ren, Xiaohang & Wen, Fenghua, 2022. "Can digital financial inclusion affect CO2 emissions of China at the prefecture level? Evidence from a spatial econometric approach," Energy Economics, Elsevier, vol. 109(C).
    39. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    40. B. Lahcen & J. Brusselaers & K. Vrancken & Y. Dams & C. Silva Paes & J. Eyckmans & S. Rousseau, 2020. "Green Recovery Policies for the COVID-19 Crisis: Modelling the Impact on the Economy and Greenhouse Gas Emissions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 731-750, August.
    41. Zhu, Xuehong & Chen, Ying & Feng, Chao, 2018. "Green total factor productivity of China's mining and quarrying industry: A global data envelopment analysis," Resources Policy, Elsevier, vol. 57(C), pages 1-9.
    42. Lars J. Nilsson & Fredric Bauer & Max Åhman & Fredrik N. G. Andersson & Chris Bataille & Stephane de la Rue du Can & Karin Ericsson & Teis Hansen & Bengt Johansson & Stefan Lechtenböhmer & Mariësse va, 2021. "An industrial policy framework for transforming energy and emissions intensive industries towards zero emissions," Climate Policy, Taylor & Francis Journals, vol. 21(8), pages 1053-1065, September.
    43. Mushtaq, Zulqarnain & Wei, Wei & Jamil, Ihsan & Sharif, Maimoona & Chandio, Abbas Ali & Ahmad, Fayyaz, 2022. "Evaluating the factors of coal consumption inefficiency in energy intensive industries of China: An epsilon-based measure model," Resources Policy, Elsevier, vol. 78(C).
    44. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    45. Li, Hai-ling & Zhu, Xue-hong & Chen, Jin-yu & Jiang, Fei-tao, 2019. "Environmental regulations, environmental governance efficiency and the green transformation of China's iron and steel enterprises," Ecological Economics, Elsevier, vol. 165(C), pages 1-1.
    46. Akihiro Otsuka, 2020. "How do population agglomeration and interregional networks improve energy efficiency?," Asia-Pacific Journal of Regional Science, Springer, vol. 4(1), pages 1-25, February.
    47. Xu, Renjing & Xu, Bin, 2022. "Exploring the effective way of reducing carbon intensity in the heavy industry using a semiparametric econometric approach," Energy, Elsevier, vol. 243(C).
    48. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    49. Lin, Boqiang & Guan, Chunxu, 2023. "Evaluation and determinants of total unified efficiency of China's manufacturing sector under the carbon neutrality target," Energy Economics, Elsevier, vol. 119(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Fengqin & Sim, Jae-yeon & Sun, Huaping & Edziah, Bless Kofi & Adom, Philip Kofi & Song, Shunfeng, 2023. "Assessing the role of economic globalization on energy efficiency: Evidence from a global perspective," China Economic Review, Elsevier, vol. 77(C).
    2. Li, Nan & Jiang, Yuqing & Mu, Hailin & Yu, Zhixin, 2018. "Efficiency evaluation and improvement potential for the Chinese agricultural sector at the provincial level based on data envelopment analysis (DEA)," Energy, Elsevier, vol. 164(C), pages 1145-1160.
    3. Honma, Satoshi & Hu, Jin-Li, 2014. "A panel data parametric frontier technique for measuring total-factor energy efficiency: An application to Japanese regions," Energy, Elsevier, vol. 78(C), pages 732-739.
    4. Yu, Dejian & He, Xiaorong, 2020. "A bibliometric study for DEA applied to energy efficiency: Trends and future challenges," Applied Energy, Elsevier, vol. 268(C).
    5. Lv, Yulan & Chen, Wei & Cheng, Jianquan, 2020. "Effects of urbanization on energy efficiency in China: New evidence from short run and long run efficiency models," Energy Policy, Elsevier, vol. 147(C).
    6. Yang, Zhenbing & Shao, Shuai & Yang, Lili & Liu, Jianghua, 2017. "Differentiated effects of diversified technological sources on energy-saving technological progress: Empirical evidence from China's industrial sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1379-1388.
    7. Wang, Zhaohua & Feng, Chao & Zhang, Bin, 2014. "An empirical analysis of China's energy efficiency from both static and dynamic perspectives," Energy, Elsevier, vol. 74(C), pages 322-330.
    8. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    9. Li, Hong-Zhou & Kopsakangas-Savolainen, Maria & Yan, Ming-Zhe & Wang, Jian-Lin & Xie, Bai-Chen, 2019. "Which provincial administrative regions in China should reduce their coal consumption? An environmental energy input requirement function based analysis," Energy Policy, Elsevier, vol. 127(C), pages 51-63.
    10. Amjadi, Golnaz & Lundgren, Tommy, 2022. "Is industrial energy inefficiency transient or persistent? Evidence from Swedish manufacturing," Applied Energy, Elsevier, vol. 309(C).
    11. Zhang, H. & Fan, L.W. & Zhou, P., 2020. "Handling heterogeneity in frontier modeling of city-level energy efficiency: The case of China," Applied Energy, Elsevier, vol. 279(C).
    12. Lundgren, Tommy & Marklund, Per-Olov & Zhang, Shanshan, 2016. "Industrial energy demand and energy efficiency – Evidence from Sweden," Resource and Energy Economics, Elsevier, vol. 43(C), pages 130-152.
    13. Otsuka, Akihiro, 2023. "Industrial electricity consumption efficiency and energy policy in Japan," Utilities Policy, Elsevier, vol. 81(C).
    14. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
    15. Du, Minzhe & Wang, Bing & Zhang, Ning, 2018. "National research funding and energy efficiency: Evidence from the National Science Foundation of China," Energy Policy, Elsevier, vol. 120(C), pages 335-346.
    16. Zhang, Bin & Lu, Danting & He, Yan & Chiu, Yung-ho, 2018. "The efficiencies of resource-saving and environment: A case study based on Chinese cities," Energy, Elsevier, vol. 150(C), pages 493-507.
    17. Feng, Chao & Huang, Jian-Bai & Wang, Miao, 2019. "The sustainability of China’s metal industries: features, challenges and future focuses," Resources Policy, Elsevier, vol. 60(C), pages 215-224.
    18. Ouyang, Xiaoling & Chen, Jiaqi & Du, Kerui, 2021. "Energy efficiency performance of the industrial sector: From the perspective of technological gap in different regions in China," Energy, Elsevier, vol. 214(C).
    19. Chia-Jung Tu & Ming-Chung Chang & Chiang-Ping Chen, 2016. "Progressive Time-Weighted Dynamic Energy Efficiency, Energy Decoupling Rate, and Decarbonization: An Empirical Study on G7 and BRICS," Sustainability, MDPI, vol. 8(9), pages 1-17, September.
    20. Zhong, Shen & Li, Junwei & Chen, Xi & Wen, Hongmei, 2022. "A multi-hierarchy meta-frontier approach for measuring green total factor productivity: An application of pig breeding in China," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:82:y:2023:i:c:s0301420723002271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.