Universal option valuation using quadrature methods
Author
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jing-Zhi Huang & Marti G. Subrahmanyam & G. George Yu, 1999.
"Pricing And Hedging American Options: A Recursive Integration Method,"
World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar, chapter 8, pages 219-239,
World Scientific Publishing Co. Pte. Ltd..
- Huang, Jing-zhi & Subrahmanyam, Marti G & Yu, G George, 1996. "Pricing and Hedging American Options: A Recursive Integration Method," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 277-300.
- Geske, Robert & Johnson, Herb E, 1984. "The American Put Option Valued Analytically," Journal of Finance, American Finance Association, vol. 39(5), pages 1511-1524, December.
- Dietmar Leisen & Matthias Reimer, 1996. "Binomial models for option valuation - examining and improving convergence," Applied Mathematical Finance, Taylor & Francis Journals, vol. 3(4), pages 319-346.
- Sullivan, Michael A, 2000. "Valuing American Put Options Using Gaussian Quadrature," The Review of Financial Studies, Society for Financial Studies, vol. 13(1), pages 75-94.
- Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
- Cheuk, Terry H. F. & Vorst, Ton C. F., 1997. "Currency lookback options and observation frequency: A binomial approach," Journal of International Money and Finance, Elsevier, vol. 16(2), pages 173-187, April.
- Phelim Boyle & Yisong Tian, 1998. "An explicit finite difference approach to the pricing of barrier options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 5(1), pages 17-43.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
- Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
- In oon Kim & Bong-Gyu Jang & Kyeong Tae Kim, 2013. "A simple iterative method for the valuation of American options," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 885-895, May.
- Cosma, Antonio & Galluccio, Stefano & Scaillet, Olivier, 2012.
"Valuing American options using fast recursive projections,"
Working Papers
unige:41856, University of Geneva, Geneva School of Economics and Management.
- Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2016. "Valuing American options using fast recursive projections," Working Papers unige:82087, University of Geneva, Geneva School of Economics and Management.
- Antonio Cosma & Stefano Galluccio & Paola Pederzoli & Olivier Scaillet, 2015. "Valuing American options using fast recursive projections," DEM Discussion Paper Series 15-20, Department of Economics at the University of Luxembourg.
- Antonio Cosma & Stefano Galluccio & Paola Pederzoli & O. Scaillet, 2012. "Valuing American Options Using Fast Recursive Projections," Swiss Finance Institute Research Paper Series 12-26, Swiss Finance Institute.
- Qianru Shang & Brian Byrne, 2021. "American option pricing: Optimal Lattice models and multidimensional efficiency tests," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(4), pages 514-535, April.
- Minqiang Li, 2010.
"A quasi-analytical interpolation method for pricing American options under general multi-dimensional diffusion processes,"
Review of Derivatives Research, Springer, vol. 13(2), pages 177-217, July.
- Li, Minqiang, 2009. "A Quasi-analytical Interpolation Method for Pricing American Options under General Multi-dimensional Diffusion Processes," MPRA Paper 17348, University Library of Munich, Germany.
- Barone-Adesi, Giovanni, 2005. "The saga of the American put," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2909-2918, November.
- Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020.
"Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps,"
Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
- Antonio Cosma & Stefano Galluccio & Paola Pederzoli & Olivier Scaillet, 2016. "Early exercise decision in American options with dividends, stochastic volatility and jumps," Papers 1612.03031, arXiv.org.
- Antonio Cosma & Stefano Galluccio & Paola Pederzoli & O. Scaillet, 2016. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility and Jumps," Swiss Finance Institute Research Paper Series 16-73, Swiss Finance Institute.
- Jongwoo Lee & Dean Paxson, 2003. "Confined exponential approximations for the valuation of American options," The European Journal of Finance, Taylor & Francis Journals, vol. 9(5), pages 449-474.
- Guglielmo Maria Caporale & Mario Cerrato, 2008.
"Chebyshev polynomial approximation to approximate partial differential equations,"
Working Papers
2008_16, Business School - Economics, University of Glasgow.
- Caporale, Guglielmo Maria & Cerrato, Mario, 2008. "Chebyshev polynomial approximation to approximate partial differential equations," SIRE Discussion Papers 2008-15, Scottish Institute for Research in Economics (SIRE).
- Manuel Moreno & Javier Navas, 2003.
"On the Robustness of Least-Squares Monte Carlo (LSM) for Pricing American Derivatives,"
Review of Derivatives Research, Springer, vol. 6(2), pages 107-128, May.
- Manuel Moreno & Javier R. Navas, 2001. "On the robustness of least-squares Monte Carlo (LSM) for pricing American derivatives," Economics Working Papers 543, Department of Economics and Business, Universitat Pompeu Fabra.
- D. Andricopoulos, Ari & Widdicks, Martin & Newton, David P. & Duck, Peter W., 2007. "Extending quadrature methods to value multi-asset and complex path dependent options," Journal of Financial Economics, Elsevier, vol. 83(2), pages 471-499, February.
- Elias Tzavalis & Shijun Wang, 2003. "Pricing American Options under Stochastic Volatility: A New Method Using Chebyshev Polynomials to Approximate the Early Exercise Boundary," Working Papers 488, Queen Mary University of London, School of Economics and Finance.
- Doobae Jun & Hyejin Ku, 2013. "Valuation of American partial barrier options," Review of Derivatives Research, Springer, vol. 16(2), pages 167-191, July.
- Zhongkai Liu & Tao Pang, 2016. "An efficient grid lattice algorithm for pricing American-style options," International Journal of Financial Markets and Derivatives, Inderscience Enterprises Ltd, vol. 5(1), pages 36-55.
- Chiarella, Carl & Ziogas, Andrew, 2005.
"Evaluation of American strangles,"
Journal of Economic Dynamics and Control, Elsevier, vol. 29(1-2), pages 31-62, January.
- Carl Chiarella & Andrew Ziogas, 2002. "Evaluation of American Strangles," Computing in Economics and Finance 2002 28, Society for Computational Economics.
- Carl Chiarella & Andrew Ziogas, 2002. "Evaluation of American Strangles," Research Paper Series 83, Quantitative Finance Research Centre, University of Technology, Sydney.
- Chockalingam, Arun & Muthuraman, Kumar, 2015. "An approximate moving boundary method for American option pricing," European Journal of Operational Research, Elsevier, vol. 240(2), pages 431-438.
- Yacin Jerbi, 2016. "Early exercise premium method for pricing American options under the J-model," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-26, December.
- Ruas, João Pedro & Dias, José Carlos & Vidal Nunes, João Pedro, 2013. "Pricing and static hedging of American-style options under the jump to default extended CEV model," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4059-4072.
- Song-Ping Zhu & Xin-Jiang He & XiaoPing Lu, 2018. "A new integral equation formulation for American put options," Quantitative Finance, Taylor & Francis Journals, vol. 18(3), pages 483-490, March.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jfinec:v:67:y:2003:i:3:p:447-471. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505576 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.