[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/jetheo/v148y2013i6p2737-2748.html
   My bibliography  Save this article

A strategic implementation of the Average Tree solution for cycle-free graph games

Author

Listed:
  • van den Brink, René
  • van der Laan, Gerard
  • Moes, Nigel
Abstract
In this note we provide a strategic implementation of the Average Tree solution for zero-monotonic cycle-free graph games. That is, we propose a non-cooperative mechanism of which the unique subgame perfect equilibrium payoffs correspond to the average hierarchical outcome of the game. This mechanism takes into account that a player is only able to communicate with other players (i.e., to make proposals about a division of the surplus of cooperation) when they are connected in the graph.

Suggested Citation

  • van den Brink, René & van der Laan, Gerard & Moes, Nigel, 2013. "A strategic implementation of the Average Tree solution for cycle-free graph games," Journal of Economic Theory, Elsevier, vol. 148(6), pages 2737-2748.
  • Handle: RePEc:eee:jetheo:v:148:y:2013:i:6:p:2737-2748
    DOI: 10.1016/j.jet.2013.07.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0022053113001361
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jet.2013.07.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Perez-Castrillo, David & Wettstein, David, 2001. "Bidding for the Surplus : A Non-cooperative Approach to the Shapley Value," Journal of Economic Theory, Elsevier, vol. 100(2), pages 274-294, October.
    2. Vidal-Puga, Juan & Bergantinos, Gustavo, 2003. "An implementation of the Owen value," Games and Economic Behavior, Elsevier, vol. 44(2), pages 412-427, August.
    3. Herings, P. Jean Jacques & van der Laan, Gerard & Talman, Dolf, 2008. "The average tree solution for cycle-free graph games," Games and Economic Behavior, Elsevier, vol. 62(1), pages 77-92, January.
    4. Yuan Ju & David Wettstein, 2009. "Implementing cooperative solution concepts: a generalized bidding approach," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 39(2), pages 307-330, May.
    5. David Pérez-Castrillo & David Wettstein, 2002. "Choosing Wisely: A Multibidding Approach," American Economic Review, American Economic Association, vol. 92(5), pages 1577-1587, December.
    6. Rene van den Brink & Yukihiko Funaki, 2010. "Axiomatization and Implementation of Discounted Shapley Values," Tinbergen Institute Discussion Papers 10-065/1, Tinbergen Institute.
    7. van den Brink, René & van der Laan, Gerard & Moes, Nigel, 2012. "Fair agreements for sharing international rivers with multiple springs and externalities," Journal of Environmental Economics and Management, Elsevier, vol. 63(3), pages 388-403.
    8. Herings, P.J.J. & van der Laan, G. & Talman, A.J.J. & Yang, Z., 2010. "The average tree solution for cooperative games with communication structure," Games and Economic Behavior, Elsevier, vol. 68(2), pages 626-633, March.
    9. Ambec, Stefan & Sprumont, Yves, 2002. "Sharing a River," Journal of Economic Theory, Elsevier, vol. 107(2), pages 453-462, December.
    10. Macho-Stadler, Ines & Perez-Castrillo, David & Wettstein, David, 2006. "Efficient bidding with externalities," Games and Economic Behavior, Elsevier, vol. 57(2), pages 304-320, November.
    11. Hart, Sergiu & Mas-Colell, Andreu, 1989. "Potential, Value, and Consistency," Econometrica, Econometric Society, vol. 57(3), pages 589-614, May.
    12. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2010. "Rooted-tree solutions for tree games," European Journal of Operational Research, Elsevier, vol. 203(2), pages 404-408, June.
    13. Roger B. Myerson, 1977. "Graphs and Cooperation in Games," Mathematics of Operations Research, INFORMS, vol. 2(3), pages 225-229, August.
    14. Perez-Castrillo, David & Wettstein, David, 2005. "Forming efficient networks," Economics Letters, Elsevier, vol. 87(1), pages 83-87, April.
    15. Gabrielle Demange, 2004. "On Group Stability in Hierarchies and Networks," Journal of Political Economy, University of Chicago Press, vol. 112(4), pages 754-778, August.
    16. Maschler, M & Owen, G, 1989. "The Consistent Shapley Value for Hyperplane Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 18(4), pages 389-407.
    17. René Brink & Yukihiko Funaki & Yuan Ju, 2013. "Reconciling marginalism with egalitarianism: consistency, monotonicity, and implementation of egalitarian Shapley values," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 40(3), pages 693-714, March.
    18. Talman, A.J.J. & Yamamoto, Y., 2008. "Average tree solution and subcore for acyclic graph games," Other publications TiSEM 47c15bd0-3911-429c-8952-7, Tilburg University, School of Economics and Management.
    19. Slikker, Marco, 2007. "Bidding for surplus in network allocation problems," Journal of Economic Theory, Elsevier, vol. 137(1), pages 493-511, November.
    20. Mutuswami, Suresh & Perez-Castrillo, David & Wettstein, David, 2004. "Bidding for the surplus: realizing efficient outcomes in economic environments," Games and Economic Behavior, Elsevier, vol. 48(1), pages 111-123, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Béal, Sylvain & Ferrières, Sylvain & Rémila, Eric & Solal, Philippe, 2018. "Axiomatization of an allocation rule for ordered tree TU-games," Mathematical Social Sciences, Elsevier, vol. 93(C), pages 132-140.
    2. Sylvain Béal & Eric Rémila & Philippe Solal, 2017. "A strategic implementation of the sequential equal surplus division rule for digraph cooperative games," Annals of Operations Research, Springer, vol. 253(1), pages 43-59, June.
    3. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2015. "Characterization of the Average Tree solution and its kernel," Journal of Mathematical Economics, Elsevier, vol. 60(C), pages 159-165.
    4. Hu, Cheng-Cheng & Tsay, Min-Hung & Yeh, Chun-Hsien, 2018. "A study of the nucleolus in the nested cost-sharing problem: Axiomatic and strategic perspectives," Games and Economic Behavior, Elsevier, vol. 109(C), pages 82-98.
    5. Philippe Solal & Sylvain Béal & Sylvain Ferrières & Eric Rémila, 2017. "Axiomatic and bargaining foundation of an allocation rule for ordered tree TU-games," Post-Print halshs-01644811, HAL.
    6. Tsay, Min-Hung & Yeh, Chun-Hsien, 2019. "Relations among the central rules in bankruptcy problems: A strategic perspective," Games and Economic Behavior, Elsevier, vol. 113(C), pages 515-532.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamijo, Yoshio, 2008. "Implementation of weighted values in hierarchical and horizontal cooperation structures," Mathematical Social Sciences, Elsevier, vol. 56(3), pages 336-349, November.
    2. László Á. Kóczy, 2018. "Partition Function Form Games," Theory and Decision Library C, Springer, number 978-3-319-69841-0, December.
    3. Sylvain Béal & Eric Rémila & Philippe Solal, 2017. "A strategic implementation of the sequential equal surplus division rule for digraph cooperative games," Annals of Operations Research, Springer, vol. 253(1), pages 43-59, June.
    4. Sylvain Béal & Sylvain Ferrières & Eric Rémila & Philippe Solal, 2017. "Axiomatic and bargaining foundation of an allocation rule for ordered tree TU-games," Post-Print halshs-01644797, HAL.
    5. Pérez-Castrillo, David & Quérou, Nicolas, 2012. "Smooth multibidding mechanisms," Games and Economic Behavior, Elsevier, vol. 76(2), pages 420-438.
    6. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2012. "Weighted component fairness for forest games," Mathematical Social Sciences, Elsevier, vol. 64(2), pages 144-151.
    7. Jun Su & Yuan Liang & Guangmin Wang & Genjiu Xu, 2020. "Characterizations, Potential, and an Implementation of the Shapley-Solidarity Value," Mathematics, MDPI, vol. 8(11), pages 1-20, November.
    8. Sylvain Béal & Eric Rémila & Philippe Solal, 2022. "Allocation rules for cooperative games with restricted communication and a priori unions based on the Myerson value and the average tree solution," Journal of Combinatorial Optimization, Springer, vol. 43(4), pages 818-849, May.
    9. Niharika Kakoty & Surajit Borkotokey & Rajnish Kumar & Abhijit Bora, 2024. "Weighted Myerson value for Network games," Papers 2402.11464, arXiv.org.
    10. Slikker, Marco, 2007. "Bidding for surplus in network allocation problems," Journal of Economic Theory, Elsevier, vol. 137(1), pages 493-511, November.
    11. Emilio Calvo & Esther Gutiérrez-López, 2016. "A strategic approach for the discounted Shapley values," Theory and Decision, Springer, vol. 80(2), pages 271-293, February.
    12. Sylvain Béal & Amandine Ghintran & Eric Rémila & Philippe Solal, 2015. "The sequential equal surplus division for rooted forest games and an application to sharing a river with bifurcations," Theory and Decision, Springer, vol. 79(2), pages 251-283, September.
    13. Sylvain Béal & Eric Rémila & Philippe Solal, 2015. "Discounted Tree Solutions," Working Papers hal-01377923, HAL.
    14. Ander Perez-Orive & Andrea Caggese, 2017. "Capital Misallocation and Secular Stagnation," 2017 Meeting Papers 382, Society for Economic Dynamics.
    15. René Brink & P. Herings & Gerard Laan & A. Talman, 2015. "The Average Tree permission value for games with a permission tree," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 58(1), pages 99-123, January.
    16. Gustavo Bergantiños & Juan Vidal-Puga, 2004. "Realizing efficient outcomes in cost spanning problems," Game Theory and Information 0403001, University Library of Munich, Germany.
    17. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2015. "Characterization of the Average Tree solution and its kernel," Journal of Mathematical Economics, Elsevier, vol. 60(C), pages 159-165.
    18. Calvo, Emilio & Gutiérrez-López, Esther, 2021. "Recursive and bargaining values," Mathematical Social Sciences, Elsevier, vol. 113(C), pages 97-106.
    19. Sylvain Béal & Eric Rémila & Philippe Solal, 2012. "Compensations in the Shapley value and the compensation solutions for graph games," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(1), pages 157-178, February.
    20. Anna Khmelnitskaya & Gerard van der Laan & Dolf Talman, 2016. "Centrality Rewarding Shapley and Myerson Values for Undirected Graph Games," Tinbergen Institute Discussion Papers 16-070/II, Tinbergen Institute.

    More about this item

    Keywords

    Implementation; Cycle-free graph game; Hierarchical outcome; Average Tree solution; Weighted hierarchical outcome;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jetheo:v:148:y:2013:i:6:p:2737-2748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622869 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.