[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v113y2022ics030504832200113x.html
   My bibliography  Save this article

Bank production with nonperforming loans: A minimum distance directional slack inefficiency approach

Author

Listed:
  • Fukuyama, Hirofumi
  • Matousek, Roman
  • Tzeremes, Nickolaos G.
Abstract
The study examines a bank production process with nonperforming loans in Japanese banking. Banks’ production process is measured by utilizing a minimum distance directional slack inefficiency model and by treating nonperforming loans through using the costly disposability property. Japanese banks’ performance levels are evaluated over the period 2013–2019. The estimated banks’ minimum distance directional slack inefficiency measure is further decomposed into labor, physical capital, loan, investment and strategic (decision) inefficiency. Empirical findings indicate substantial inefficiencies in Japanese banking that are mainly attributed to the hard-to-achieve targets set by the standard directional slack inefficiency model which is based on Koopmans’ notion of strong efficiency. The proposed minimum distance directional slack inefficiency estimator provides bank managers with practical targets, by evaluating banks at the closest point on the strongly efficient frontier. Finally, the empirical evidence suggests that the key factors behind Japanese banks’ performance are high investment and strategic (decision) efficiency levels.

Suggested Citation

  • Fukuyama, Hirofumi & Matousek, Roman & Tzeremes, Nickolaos G., 2022. "Bank production with nonperforming loans: A minimum distance directional slack inefficiency approach," Omega, Elsevier, vol. 113(C).
  • Handle: RePEc:eee:jomega:v:113:y:2022:i:c:s030504832200113x
    DOI: 10.1016/j.omega.2022.102706
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030504832200113X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2022.102706?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kenneth Rødseth & Eirik Romstad, 2014. "Environmental Regulations, Producer Responses, and Secondary Benefits: Carbon Dioxide Reductions Under the Acid Rain Program," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(1), pages 111-135, September.
    2. Juo, Jia-Ching & Fu, Tsu-Tan & Yu, Ming-Miin & Lin, Yu-Hui, 2016. "Non-radial profit performance: An application to Taiwanese banks," Omega, Elsevier, vol. 65(C), pages 111-121.
    3. Hirofumi Fukuyama & William Weber, 2015. "Measuring Japanese bank performance: a dynamic network DEA approach," Journal of Productivity Analysis, Springer, vol. 44(3), pages 249-264, December.
    4. Jan Willem Van den End, 2016. "A macroprudential approach to address liquidity risk with the loan-to-deposit ratio," The European Journal of Finance, Taylor & Francis Journals, vol. 22(3), pages 237-253, February.
    5. Drake, Leigh & Hall, Maximilian J.B. & Simper, Richard, 2009. "Bank modelling methodologies: A comparative non-parametric analysis of efficiency in the Japanese banking sector," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(1), pages 1-15, February.
    6. Berger, Allen N. & Mester, Loretta J., 1997. "Inside the black box: What explains differences in the efficiencies of financial institutions?," Journal of Banking & Finance, Elsevier, vol. 21(7), pages 895-947, July.
    7. Chen, Lei & Wang, Ying-Ming, 2020. "DEA target setting approach within the cross efficiency framework," Omega, Elsevier, vol. 96(C).
    8. Wheelock, David C. & Wilson, Paul W., 2001. "New evidence on returns to scale and product mix among U.S. commercial banks," Journal of Monetary Economics, Elsevier, vol. 47(3), pages 653-674, June.
    9. David C. Wheelock & Paul W. Wilson, 2012. "Do Large Banks Have Lower Costs? New Estimates of Returns to Scale for U.S. Banks," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(1), pages 171-199, February.
    10. Lozano, Sebastián, 2016. "Slacks-based inefficiency approach for general networks with bad outputs: An application to the banking sector," Omega, Elsevier, vol. 60(C), pages 73-84.
    11. Drake, Leigh & Hall, Maximilian J. B., 2003. "Efficiency in Japanese banking: An empirical analysis," Journal of Banking & Finance, Elsevier, vol. 27(5), pages 891-917, May.
    12. Zhu, Qingyuan & Wu, Jie & Ji, Xiang & Li, Feng, 2018. "A simple MILP to determine closest targets in non-oriented DEA model satisfying strong monotonicity," Omega, Elsevier, vol. 79(C), pages 1-8.
    13. S Lozano & G Villa, 2005. "Determining a sequence of targets in DEA," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(12), pages 1439-1447, December.
    14. Òscar Jordà & Björn Richter & Moritz Schularick & Alan M Taylor, 2021. "Bank Capital Redux: Solvency, Liquidity, and Crisis," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 88(1), pages 260-286.
    15. Yang, Xiaopeng & Morita, Hiroshi, 2013. "Efficiency improvement from multiple perspectives: An application to Japanese banking industry," Omega, Elsevier, vol. 41(3), pages 501-509.
    16. Kourtzidis, Stavros & Matousek, Roman & Tzeremes, Nickolaos G., 2021. "Modelling a multi-period production process: Evidence from the Japanese regional banks," European Journal of Operational Research, Elsevier, vol. 294(1), pages 327-339.
    17. Briec, Walter & Kerstens, Kristiaan, 2009. "The Luenberger productivity indicator: An economic specification leading to infeasibilities," Economic Modelling, Elsevier, vol. 26(3), pages 597-600, May.
    18. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    19. Barros, Carlos Pestana & Managi, Shunsuke & Matousek, Roman, 2012. "The technical efficiency of the Japanese banks: Non-radial directional performance measurement with undesirable output," Omega, Elsevier, vol. 40(1), pages 1-8, January.
    20. Bansal, Pooja & Kumar, Sunil & Mehra, Aparna & Gulati, Rachita, 2022. "Developing two dynamic Malmquist-Luenberger productivity indices: An illustrated application for assessing productivity performance of Indian banks," Omega, Elsevier, vol. 107(C).
    21. Fare, Rolf & Knox Lovell, C. A., 1978. "Measuring the technical efficiency of production," Journal of Economic Theory, Elsevier, vol. 19(1), pages 150-162, October.
    22. Fukuyama, Hirofumi & Weber, William L., 2002. "Estimating output allocative efficiency and productivity change: Application to Japanese banks," European Journal of Operational Research, Elsevier, vol. 137(1), pages 177-190, February.
    23. Fukuyama, Hirofumi & Matousek, Roman, 2017. "Modelling bank performance: A network DEA approach," European Journal of Operational Research, Elsevier, vol. 259(2), pages 721-732.
    24. Juan Aparicio & José Ruiz & Inmaculada Sirvent, 2007. "Closest targets and minimum distance to the Pareto-efficient frontier in DEA," Journal of Productivity Analysis, Springer, vol. 28(3), pages 209-218, December.
    25. Liu, Junming & Tone, Kaoru, 2008. "A multistage method to measure efficiency and its application to Japanese banking industry," Socio-Economic Planning Sciences, Elsevier, vol. 42(2), pages 75-91, June.
    26. Fukuyama, Hirofumi & Tan, Yong, 2022. "Implementing strategic disposability for performance evaluation: Innovation, stability, profitability and corporate social responsibility in Chinese banking," European Journal of Operational Research, Elsevier, vol. 296(2), pages 652-668.
    27. Aparicio, Juan & Cordero, Jose M. & Pastor, Jesus T., 2017. "The determination of the least distance to the strongly efficient frontier in Data Envelopment Analysis oriented models: Modelling and computational aspects," Omega, Elsevier, vol. 71(C), pages 1-10.
    28. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    29. R. G. Chambers & Y. Chung & R. Färe, 1998. "Profit, Directional Distance Functions, and Nerlovian Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 351-364, August.
    30. Murty, Sushama & Robert Russell, R. & Levkoff, Steven B., 2012. "On modeling pollution-generating technologies," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 117-135.
    31. Timo Kuosmanen, 2005. "Weak Disposability in Nonparametric Production Analysis with Undesirable Outputs," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(4), pages 1077-1082.
    32. Aparicio, Juan & Garcia-Nove, Eva M. & Kapelko, Magdalena & Pastor, Jesus T., 2017. "Graph productivity change measure using the least distance to the pareto-efficient frontier in data envelopment analysis," Omega, Elsevier, vol. 72(C), pages 1-14.
    33. Fukuyama, Hirofumi & Sekitani, Kazuyuki, 2012. "Decomposing the efficient frontier of the DEA production possibility set into a smallest number of convex polyhedrons by mixed integer programming," European Journal of Operational Research, Elsevier, vol. 221(1), pages 165-174.
    34. Maria Silva Portela & Pedro Borges & Emmanuel Thanassoulis, 2003. "Finding Closest Targets in Non-Oriented DEA Models: The Case of Convex and Non-Convex Technologies," Journal of Productivity Analysis, Springer, vol. 19(2), pages 251-269, April.
    35. Fukuyama, Hirofumi & Weber, William L., 2010. "A slacks-based inefficiency measure for a two-stage system with bad outputs," Omega, Elsevier, vol. 38(5), pages 398-409, October.
    36. Rolf Färe & Shawna Grosskopf, 2003. "Nonparametric Productivity Analysis with Undesirable Outputs: Comment," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(4), pages 1070-1074.
    37. Fukuyama, Hirofumi & Matousek, Roman, 2018. "Nerlovian revenue inefficiency in a bank production context: Evidence from Shinkin banks," European Journal of Operational Research, Elsevier, vol. 271(1), pages 317-330.
    38. Fukuyama, Hirofumi & Weber, William L., 2009. "A directional slacks-based measure of technical inefficiency," Socio-Economic Planning Sciences, Elsevier, vol. 43(4), pages 274-287, December.
    39. Arping, Stefan, 2017. "Deposit competition and loan markets," Journal of Banking & Finance, Elsevier, vol. 80(C), pages 108-118.
    40. Charnes, A. & Cooper, W. W. & Golany, B. & Seiford, L. & Stutz, J., 1985. "Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 91-107.
    41. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    42. Fukuyama, Hirofumi & Matousek, Roman & Tzeremes, Nickolaos G., 2020. "A Nerlovian cost inefficiency two-stage DEA model for modeling banks’ production process: Evidence from the Turkish banking system," Omega, Elsevier, vol. 95(C).
    43. Zha, Yong & Liang, Nannan & Wu, Maoguo & Bian, Yiwen, 2016. "Efficiency evaluation of banks in China: A dynamic two-stage slacks-based measure approach," Omega, Elsevier, vol. 60(C), pages 60-72.
    44. Chambers, Robert G. & Chung, Yangho & Fare, Rolf, 1996. "Benefit and Distance Functions," Journal of Economic Theory, Elsevier, vol. 70(2), pages 407-419, August.
    45. Wang, Ke & Huang, Wei & Wu, Jie & Liu, Ying-Nan, 2014. "Efficiency measures of the Chinese commercial banking system using an additive two-stage DEA," Omega, Elsevier, vol. 44(C), pages 5-20.
    46. Sealey, Calvin W, Jr & Lindley, James T, 1977. "Inputs, Outputs, and a Theory of Production and Cost at Depository Financial Institutions," Journal of Finance, American Finance Association, vol. 32(4), pages 1251-1266, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Xiao & Wang, Libo & Emrouznejad, Ali, 2023. "Performance evaluation of Chinese commercial banks by an improved slacks-based DEA model," Socio-Economic Planning Sciences, Elsevier, vol. 90(C).
    2. Fukuyama, Hirofumi & Matousek, Roman & Tzeremes, Nickolaos G., 2024. "A unified framework for nonperforming loan modeling in bank production: An application of data envelopment analysis," Omega, Elsevier, vol. 126(C).
    3. Angilella, Silvia & Doumpos, Michalis & Pappalardo, Maria Rosaria & Zopounidis, Constantin, 2024. "Assessing the performance of banks through an improved sigma-mu multicriteria analysis approach," Omega, Elsevier, vol. 127(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fukuyama, Hirofumi & Matousek, Roman, 2018. "Nerlovian revenue inefficiency in a bank production context: Evidence from Shinkin banks," European Journal of Operational Research, Elsevier, vol. 271(1), pages 317-330.
    2. Fukuyama, Hirofumi & Matousek, Roman & Tzeremes, Nickolaos G., 2020. "A Nerlovian cost inefficiency two-stage DEA model for modeling banks’ production process: Evidence from the Turkish banking system," Omega, Elsevier, vol. 95(C).
    3. Boussemart, Jean-Philippe & Leleu, Hervé & Shen, Zhiyang & Vardanyan, Michael & Zhu, Ning, 2019. "Decomposing banking performance into economic and credit risk efficiencies," European Journal of Operational Research, Elsevier, vol. 277(2), pages 719-726.
    4. Fukuyama, Hirofumi & Tan, Yong, 2022. "Implementing strategic disposability for performance evaluation: Innovation, stability, profitability and corporate social responsibility in Chinese banking," European Journal of Operational Research, Elsevier, vol. 296(2), pages 652-668.
    5. Dan Li & Yanfeng Li & Yeming Gong & Jiawei Yang, 2021. "Estimation of bank performance from multiple perspectives: an alternative solution to the deposit dilemma," Journal of Productivity Analysis, Springer, vol. 56(2), pages 151-170, December.
    6. Fukuyama, Hirofumi & Matousek, Roman, 2017. "Modelling bank performance: A network DEA approach," European Journal of Operational Research, Elsevier, vol. 259(2), pages 721-732.
    7. Manh D. Pham & Valentin Zelenyuk, 2018. "Slack-based directional distance function in the presence of bad outputs: theory and application to Vietnamese banking," Empirical Economics, Springer, vol. 54(1), pages 153-187, February.
    8. Vaneet Bhatia & Sankarshan Basu & Subrata Kumar Mitra & Pradyumna Dash, 2018. "A review of bank efficiency and productivity," OPSEARCH, Springer;Operational Research Society of India, vol. 55(3), pages 557-600, November.
    9. Fukuyama, Hirofumi & Tsionas, Mike & Tan, Yong, 2023. "Dynamic network data envelopment analysis with a sequential structure and behavioural-causal analysis: Application to the Chinese banking industry," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1360-1373.
    10. Kourtzidis, Stavros & Matousek, Roman & Tzeremes, Nickolaos G., 2021. "Modelling a multi-period production process: Evidence from the Japanese regional banks," European Journal of Operational Research, Elsevier, vol. 294(1), pages 327-339.
    11. Hirofumi Fukuyama & William L. Weber, 2017. "Japanese Bank Productivity, 2007–2012: A Dynamic Network Approach," Pacific Economic Review, Wiley Blackwell, vol. 22(4), pages 649-676, October.
    12. Fukuyama, Hirofumi & Matousek, Roman & Tzeremes, Nickolaos G., 2024. "A unified framework for nonperforming loan modeling in bank production: An application of data envelopment analysis," Omega, Elsevier, vol. 126(C).
    13. Hirofumi Fukuyama & William Weber, 2015. "Measuring Japanese bank performance: a dynamic network DEA approach," Journal of Productivity Analysis, Springer, vol. 44(3), pages 249-264, December.
    14. Pham, Manh D. & Zelenyuk, Valentin, 2019. "Weak disposability in nonparametric production analysis: A new taxonomy of reference technology sets," European Journal of Operational Research, Elsevier, vol. 274(1), pages 186-198.
    15. Huaqing Wu & Jingyu Yang & Wensheng Wu & Ya Chen, 2023. "Interest rate liberalization and bank efficiency: A DEA analysis of Chinese commercial banks," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(2), pages 467-498, June.
    16. Lozano, Sebastián & Khezri, Somayeh, 2021. "Network DEA smallest improvement approach," Omega, Elsevier, vol. 98(C).
    17. Kao, Chiang, 2024. "Maximum slacks-based measure of efficiency in network data envelopment analysis: A case of garment manufacturing," Omega, Elsevier, vol. 123(C).
    18. Kao, Chiang, 2022. "Closest targets in the slacks-based measure of efficiency for production units with multi-period data," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1042-1054.
    19. Fukuyama, Hirofumi & Weber, William L., 2009. "A directional slacks-based measure of technical inefficiency," Socio-Economic Planning Sciences, Elsevier, vol. 43(4), pages 274-287, December.
    20. Azad, A.S.M. Sohel & Yasushi, Suzuki & Fang, Victor & Ahsan, Amirul, 2014. "Impact of policy changes on the efficiency and returns-to-scale of Japanese financial institutions: An evaluation," Research in International Business and Finance, Elsevier, vol. 32(C), pages 159-171.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:113:y:2022:i:c:s030504832200113x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.