[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v61y2015icp27-35.html
   My bibliography  Save this article

Vigilant measures of risk and the demand for contingent claims

Author

Listed:
  • Ghossoub, Mario
Abstract
We examine a class of utility maximization problems with a non-necessarily law-invariant utility, and with a non-necessarily law-invariant risk measure constraint. Under a consistency requirement on the risk measure that we call Vigilance, we show the existence of optimal contingent claims, and we show that such optimal contingent claims exhibit a desired monotonicity property. Vigilance is satisfied by a large class of risk measures, including all distortion risk measures and some classes of robust risk measures. As an illustration, we consider a problem of optimal insurance design where the premium principle satisfies the vigilance property, hence covering a large collection of commonly used premium principles, including premium principles that are not law-invariant. We show the existence of optimal indemnity schedules, and we show that optimal indemnity schedules are nondecreasing functions of the insurable loss.

Suggested Citation

  • Ghossoub, Mario, 2015. "Vigilant measures of risk and the demand for contingent claims," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 27-35.
  • Handle: RePEc:eee:insuma:v:61:y:2015:i:c:p:27-35
    DOI: 10.1016/j.insmatheco.2014.11.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668714001619
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2014.11.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. repec:dau:papers:123456789/6105 is not listed on IDEAS
    2. repec:hal:journl:hal-00538974 is not listed on IDEAS
    3. Carlier, G. & Dana, R.-A., 2005. "Rearrangement inequalities in non-convex insurance models," Journal of Mathematical Economics, Elsevier, vol. 41(4-5), pages 483-503, August.
    4. repec:dau:papers:123456789/5389 is not listed on IDEAS
    5. Gur Huberman & David Mayers & Clifford W. Smith Jr., 1983. "Optimal Insurance Policy Indemnity Schedules," Bell Journal of Economics, The RAND Corporation, vol. 14(2), pages 415-426, Autumn.
    6. repec:dau:papers:123456789/5392 is not listed on IDEAS
    7. Amarante, Massimiliano & Ghossoub, Mario & Phelps, Edmund, 2015. "Ambiguity on the insurer’s side: The demand for insurance," Journal of Mathematical Economics, Elsevier, vol. 58(C), pages 61-78.
    8. repec:dau:papers:123456789/2317 is not listed on IDEAS
    9. Elyès Jouini & Walter Schachermayer & Nizar Touzi, 2006. "Law Invariant Risk Measures Have the Fatou Property," Post-Print halshs-00176522, HAL.
    10. Alexander Schied, 2005. "Optimal Investments for Robust Utility Functionals in Complete Market Models," Mathematics of Operations Research, INFORMS, vol. 30(3), pages 750-764, August.
    11. Dana, Rose-Anne & Scarsini, Marco, 2007. "Optimal risk sharing with background risk," Journal of Economic Theory, Elsevier, vol. 133(1), pages 152-176, March.
    12. repec:dau:papers:123456789/5394 is not listed on IDEAS
    13. Douglas Gale & Martin Hellwig, 1985. "Incentive-Compatible Debt Contracts: The One-Period Problem," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 52(4), pages 647-663.
    14. Dana, R. A., 2004. "Market behavior when preferences are generated by second-order stochastic dominance," Journal of Mathematical Economics, Elsevier, vol. 40(6), pages 619-639, September.
    15. Alexander Schied, 2004. "On the Neyman-Pearson problem for law-invariant risk measures and robust utility functionals," Papers math/0407127, arXiv.org.
    16. repec:dau:papers:123456789/6697 is not listed on IDEAS
    17. Massimiliano Amarante & Mario Ghossoub & Edmund Phelps, 2012. "Contracting for Innovation under Knightian Uncertainty," Cahiers de recherche 18-2012, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    18. Alexander Schied, 2007. "Optimal investments for risk- and ambiguity-averse preferences: a duality approach," Finance and Stochastics, Springer, vol. 11(1), pages 107-129, January.
    19. Carlier Guillaume & Dana Rose-Anne, 2006. "Law invariant concave utility functions and optimization problems with monotonicity and comonotonicity constraints," Statistics & Risk Modeling, De Gruyter, vol. 24(1/2006), pages 1-26, July.
    20. Guillaume Carlier & Rose-Anne Dana, 2003. "Pareto efficient insurance contracts when the insurer's cost function is discontinuous," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 21(4), pages 871-893, June.
    21. repec:dau:papers:123456789/342 is not listed on IDEAS
    22. Itzhak Gilboa, 2004. "Uncertainty in Economic Theory," Post-Print hal-00756317, HAL.
    23. Rose‐Anne Dana, 2005. "A Representation Result For Concave Schur Concave Functions," Mathematical Finance, Wiley Blackwell, vol. 15(4), pages 613-634, October.
    24. Raviv, Artur, 1979. "The Design of an Optimal Insurance Policy," American Economic Review, American Economic Association, vol. 69(1), pages 84-96, March.
    25. Charalambos D. Aliprantis & Kim C. Border, 2006. "Infinite Dimensional Analysis," Springer Books, Springer, edition 0, number 978-3-540-29587-7, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amarante, Massimiliano & Ghossoub, Mario & Phelps, Edmund, 2015. "Ambiguity on the insurer’s side: The demand for insurance," Journal of Mathematical Economics, Elsevier, vol. 58(C), pages 61-78.
    2. Mario Ghossoub, 2015. "Equimeasurable Rearrangements with Capacities," Mathematics of Operations Research, INFORMS, vol. 40(2), pages 429-445, February.
    3. Mario Ghossoub, 2016. "Optimal Insurance with Heterogeneous Beliefs and Disagreement about Zero-Probability Events," Risks, MDPI, vol. 4(3), pages 1-28, August.
    4. Massimiliano Amarante & Mario Ghossoub, 2016. "Optimal Insurance for a Minimal Expected Retention: The Case of an Ambiguity-Seeking Insurer," Risks, MDPI, vol. 4(1), pages 1-27, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghossoub, Mario, 2011. "Monotone equimeasurable rearrangements with non-additive probabilities," MPRA Paper 37629, University Library of Munich, Germany, revised 23 Mar 2012.
    2. Chi, Yichun & Zhuang, Sheng Chao, 2020. "Optimal insurance with belief heterogeneity and incentive compatibility," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 104-114.
    3. Corina Birghila & Tim J. Boonen & Mario Ghossoub, 2020. "Optimal Insurance under Maxmin Expected Utility," Papers 2010.07383, arXiv.org.
    4. Mario Ghossoub, 2015. "Equimeasurable Rearrangements with Capacities," Mathematics of Operations Research, INFORMS, vol. 40(2), pages 429-445, February.
    5. Massimiliano Amarante & Mario Ghossoub & Edmund Phelps, 2012. "Contracting for Innovation under Knightian Uncertainty," Cahiers de recherche 18-2012, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    6. Yichun Chi & Wei Wei, 2020. "Optimal insurance with background risk: An analysis of general dependence structures," Finance and Stochastics, Springer, vol. 24(4), pages 903-937, October.
    7. Lu, Zhiyi & Meng, Shengwang & Liu, Leping & Han, Ziqi, 2018. "Optimal insurance design under background risk with dependence," Insurance: Mathematics and Economics, Elsevier, vol. 80(C), pages 15-28.
    8. Ghossoub, Mario, 2010. "Supplement to "Belief heterogeneity in the Arrow-Borch-Raviv insurance model"," MPRA Paper 37717, University Library of Munich, Germany, revised 22 Mar 2012.
    9. Carole Bernard & Weidong Tian, 2010. "Insurance Market Effects of Risk Management Metrics," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 35(1), pages 47-80, June.
    10. Mario Ghossoub & Michael B. Zhu & Wing Fung Chong, 2024. "Pareto-Optimal Peer-to-Peer Risk Sharing with Robust Distortion Risk Measures," Papers 2409.05103, arXiv.org.
    11. Rose‐Anne Dana, 2005. "A Representation Result For Concave Schur Concave Functions," Mathematical Finance, Wiley Blackwell, vol. 15(4), pages 613-634, October.
    12. Grigorova Miryana, 2014. "Stochastic orderings with respect to a capacity and an application to a financial optimization problem," Statistics & Risk Modeling, De Gruyter, vol. 31(2), pages 183-213, June.
    13. Boonen, Tim J. & Ghossoub, Mario, 2021. "Optimal reinsurance with multiple reinsurers: Distortion risk measures, distortion premium principles, and heterogeneous beliefs," Insurance: Mathematics and Economics, Elsevier, vol. 101(PA), pages 23-37.
    14. Chi, Yichun & Zhou, Xun Yu & Zhuang, Sheng Chao, 2024. "Variance insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 62-82.
    15. Ghossoub, Mario, 2019. "Optimal insurance under rank-dependent expected utility," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 51-66.
    16. Yichun Chi & Xun Yu Zhou & Sheng Chao Zhuang, 2020. "Variance Contracts," Papers 2008.07103, arXiv.org.
    17. Wang, Qiuqi & Wang, Ruodu & Zitikis, Ričardas, 2022. "Risk measures induced by efficient insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 56-65.
    18. Amarante, Massimiliano & Ghossoub, Mario & Phelps, Edmund, 2015. "Ambiguity on the insurer’s side: The demand for insurance," Journal of Mathematical Economics, Elsevier, vol. 58(C), pages 61-78.
    19. G. Carlier & R. Dana, 2008. "Two-persons efficient risk-sharing and equilibria for concave law-invariant utilities," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 36(2), pages 189-223, August.
    20. Corina Birghila & Tim J. Boonen & Mario Ghossoub, 2023. "Optimal insurance under maxmin expected utility," Finance and Stochastics, Springer, vol. 27(2), pages 467-501, April.

    More about this item

    Keywords

    Utility maximization; Optimal insurance design; Choquet integral; Distorted probabilities; Monotone Likelihood Ratio;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • D89 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Other
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:61:y:2015:i:c:p:27-35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.