[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v44y2009i1p59-69.html
   My bibliography  Save this article

Analytical valuation of catastrophe equity options with negative exponential jumps

Author

Listed:
  • Chang, Lung-fu
  • Hung, Mao-wei
Abstract
A catastrophe put option is valuable in the event that the underlying asset price is below the strike price; in addition, a specified catastrophic event must have happened and influenced the insured company. This paper analyzes the valuation of catastrophe put options under deterministic and stochastic interest rates when the underlying asset price is modeled through a Lévy process with finite activity. We provide explicit analytical formulas for evaluating values of catastrophe put options. The numerical examples illustrate how financial risks and catastrophic risks affect the prices of catastrophe put options.

Suggested Citation

  • Chang, Lung-fu & Hung, Mao-wei, 2009. "Analytical valuation of catastrophe equity options with negative exponential jumps," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 59-69, February.
  • Handle: RePEc:eee:insuma:v:44:y:2009:i:1:p:59-69
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(08)00127-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. Peter Carr & Liuren Wu, 2003. "The Finite Moment Log Stable Process and Option Pricing," Journal of Finance, American Finance Association, vol. 58(2), pages 753-777, April.
    3. Jaimungal, Sebastian & Wang, Tao, 2006. "Catastrophe options with stochastic interest rates and compound Poisson losses," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 469-483, June.
    4. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    5. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    6. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    7. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    8. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    9. repec:bla:jfinan:v:58:y:2003:i:2:p:753-778 is not listed on IDEAS
    10. Cox, Samuel H. & Fairchild, Joseph R. & Pedersen, Hal W., 2004. "Valuation of structured risk management products," Insurance: Mathematics and Economics, Elsevier, vol. 34(2), pages 259-272, April.
    11. S. G. Kou & Hui Wang, 2004. "Option Pricing Under a Double Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 50(9), pages 1178-1192, September.
    12. Dassios, Angelos & Jang, Jiwook, 2003. "Pricing of catastrophe reinsurance and derivatives using the Cox process with shot noise intensity," LSE Research Online Documents on Economics 2849, London School of Economics and Political Science, LSE Library.
    13. Samuel Cox & Hal Pedersen, 2000. "Catastrophe Risk Bonds," North American Actuarial Journal, Taylor & Francis Journals, vol. 4(4), pages 56-82.
    14. Ballotta, Laura, 2005. "A Lévy process-based framework for the fair valuation of participating life insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 37(2), pages 173-196, October.
    15. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bi, Hongwei & Wang, Guanying & Wang, Xingchun, 2019. "Valuation of catastrophe equity put options with correlated default risk and jump risk," Finance Research Letters, Elsevier, vol. 29(C), pages 323-329.
    2. Wang, Guanying & Wang, Xingchun & Shao, Xinjian, 2022. "Exchange options for catastrophe risk management," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    3. Kim, Hwa-Sung & Kim, Bara & Kim, Jerim, 2014. "Pricing perpetual American CatEPut options when stock prices are correlated with catastrophe losses," Economic Modelling, Elsevier, vol. 41(C), pages 15-22.
    4. Yu, Jun, 2015. "Catastrophe options with double compound Poisson processes," Economic Modelling, Elsevier, vol. 50(C), pages 291-297.
    5. Koo, Eunho & Kim, Geonwoo, 2017. "Explicit formula for the valuation of catastrophe put option with exponential jump and default risk," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 1-7.
    6. Xingchun Wang, 2016. "The Pricing of Catastrophe Equity Put Options with Default Risk," International Review of Finance, International Review of Finance Ltd., vol. 16(2), pages 181-201, June.
    7. Wang, Xingchun, 2016. "Catastrophe equity put options with target variance," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 79-86.
    8. Wang, Xingchun, 2020. "Catastrophe equity put options with floating strike prices," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    9. Massimo Arnone & Michele Leonardo Bianchi & Anna Grazia Quaranta & Gian Luca Tassinari, 2021. "Catastrophic risks and the pricing of catastrophe equity put options," Computational Management Science, Springer, vol. 18(2), pages 213-237, June.
    10. Wang, Xingchun, 2019. "Valuation of new-designed contracts for catastrophe risk management," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Burnecki, Krzysztof & Giuricich, Mario Nicoló & Palmowski, Zbigniew, 2019. "Valuation of contingent convertible catastrophe bonds — The case for equity conversion," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 238-254.
    2. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    3. Braun, Alexander, 2011. "Pricing catastrophe swaps: A contingent claims approach," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 520-536.
    4. Lin, Shih-Kuei & Wang, Shin-Yun & Chen, Carl R. & Xu, Lian-Wen, 2017. "Pricing Range Accrual Interest Rate Swap employing LIBOR market models with jump risks," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 359-373.
    5. Ma, Zong-Gang & Ma, Chao-Qun, 2013. "Pricing catastrophe risk bonds: A mixed approximation method," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 243-254.
    6. Sanjay K. Nawalkha & Xiaoyang Zhuo, 2022. "A Theory of Equivalent Expectation Measures for Contingent Claim Returns," Journal of Finance, American Finance Association, vol. 77(5), pages 2853-2906, October.
    7. Boris Ter-Avanesov & Homayoon Beigi, 2024. "MLP, XGBoost, KAN, TDNN, and LSTM-GRU Hybrid RNN with Attention for SPX and NDX European Call Option Pricing," Papers 2409.06724, arXiv.org, revised Oct 2024.
    8. Koo, Eunho & Kim, Geonwoo, 2017. "Explicit formula for the valuation of catastrophe put option with exponential jump and default risk," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 1-7.
    9. Wang, Guanying & Wang, Xingchun & Shao, Xinjian, 2022. "Exchange options for catastrophe risk management," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    10. Buckley, Winston & Long, Hongwei & Marshall, Mario, 2016. "Numerical approximations of optimal portfolios in mispriced asymmetric Lévy markets," European Journal of Operational Research, Elsevier, vol. 252(2), pages 676-686.
    11. Markus Leippold & Nikola Vasiljević, 2020. "Option-Implied Intrahorizon Value at Risk," Management Science, INFORMS, vol. 66(1), pages 397-414, January.
    12. Shuang Li & Yanli Zhou & Yonghong Wu & Xiangyu Ge, 2017. "Equilibrium approach of asset and option pricing under Lévy process and stochastic volatility," Australian Journal of Management, Australian School of Business, vol. 42(2), pages 276-295, May.
    13. Bilel Jarraya & Abdelfettah Bouri, 2013. "A Theoretical Assessment on Optimal Asset Allocations in Insurance Industry," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 2(4), pages 30-44, October.
    14. Yu, Jun, 2015. "Catastrophe options with double compound Poisson processes," Economic Modelling, Elsevier, vol. 50(C), pages 291-297.
    15. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    16. Feng, Chengxiao & Tan, Jie & Jiang, Zhenyu & Chen, Shuang, 2020. "A generalized European option pricing model with risk management," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    17. Svetlana Boyarchenko & Sergei Levendorskiĭ, 2019. "Sinh-Acceleration: Efficient Evaluation Of Probability Distributions, Option Pricing, And Monte Carlo Simulations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-49, May.
    18. Ravi Kashyap, 2016. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Papers 1609.01274, arXiv.org, revised Mar 2022.
    19. Chan, Tat Lung (Ron), 2019. "Efficient computation of european option prices and their sensitivities with the complex fourier series method," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    20. Sandun Perera & Winston Buckley & Hongwei Long, 2018. "Market-reaction-adjusted optimal central bank intervention policy in a forex market with jumps," Annals of Operations Research, Springer, vol. 262(1), pages 213-238, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:44:y:2009:i:1:p:59-69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.