[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v13y2019i1p354-386.html
   My bibliography  Save this article

Scientific community detection via bipartite scholar/journal graph co-clustering

Author

Listed:
  • Carusi, Chiara
  • Bianchi, Giuseppe
Abstract
This paper stems from the observation that researchers in different fields tend to publish in different journals. Such a relationship between researchers and journals is quantitatively exploited to identify scientific community clusters, by casting the community detection problem into a co-clustering problem on bipartite graphs. Such an approach has the potential of leading not only to the fine- grained detection of scholar communities based on the similarity of their research activity, but also to the clustering of scientific journals based on which are the most representative of each community. The proposed methodology is purely data-driven and completely unsupervised, and does not rely on any semantics (e.g. keywords or a-priori subjective categories). Moreover, unlike “flat” data structures (e.g. collaboration graphs or citation graphs) our bipartite graph approach blends in a joint structure both the researcher's attitude and interests (i.e., freedom to select the venue where to publish) as well as the community's recognition (i.e., acceptance of the publication on a target journal); as such may perhaps inspire further scientometric evaluation strategies. Our proposed approach is applied to the Italian research system, for two broad areas (ICT and Microbiology&Genetics), and reveals some questionable aspects and community overlaps in the current Italian scientific sectors classification.

Suggested Citation

  • Carusi, Chiara & Bianchi, Giuseppe, 2019. "Scientific community detection via bipartite scholar/journal graph co-clustering," Journal of Informetrics, Elsevier, vol. 13(1), pages 354-386.
  • Handle: RePEc:eee:infome:v:13:y:2019:i:1:p:354-386
    DOI: 10.1016/j.joi.2019.01.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157718304073
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2019.01.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Minguillo, 2010. "Toward a new way of mapping scientific fields: Authors' competence for publishing in scholarly journals," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(4), pages 772-786, April.
    2. Wang, Qi & Waltman, Ludo, 2016. "Large-scale analysis of the accuracy of the journal classification systems of Web of Science and Scopus," Journal of Informetrics, Elsevier, vol. 10(2), pages 347-364.
    3. Clara Calero & Renald Buter & Cecilia Cabello Valdés & Ed Noyons, 2006. "How to identify research groups using publication analysis: an example in the field of nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 66(2), pages 365-376, February.
    4. Ludo Waltman & Nees Jan van Eck, 2012. "A new methodology for constructing a publication‐level classification system of science," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(12), pages 2378-2392, December.
    5. Lovro Šubelj & Nees Jan van Eck & Ludo Waltman, 2016. "Clustering Scientific Publications Based on Citation Relations: A Systematic Comparison of Different Methods," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-23, April.
    6. Gergely Palla & Imre Derényi & Illés Farkas & Tamás Vicsek, 2005. "Uncovering the overlapping community structure of complex networks in nature and society," Nature, Nature, vol. 435(7043), pages 814-818, June.
    7. Kevin W. Boyack & Richard Klavans & Katy Börner, 2005. "Mapping the backbone of science," Scientometrics, Springer;Akadémiai Kiadó, vol. 64(3), pages 351-374, August.
    8. Perianes-Rodriguez, Antonio & Ruiz-Castillo, Javier, 2017. "A comparison of the Web of Science and publication-level classification systems of science," Journal of Informetrics, Elsevier, vol. 11(1), pages 32-45.
    9. Leydesdorff, Loet & Rafols, Ismael, 2011. "Indicators of the interdisciplinarity of journals: Diversity, centrality, and citations," Journal of Informetrics, Elsevier, vol. 5(1), pages 87-100.
    10. Ludo Waltman & Nees Jan Eck, 2012. "A new methodology for constructing a publication-level classification system of science," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(12), pages 2378-2392, December.
    11. Richard Klavans & Kevin W. Boyack, 2017. "Which Type of Citation Analysis Generates the Most Accurate Taxonomy of Scientific and Technical Knowledge?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(4), pages 984-998, April.
    12. Giovanni Abramo & Ciriaco Andrea D'Angelo & Flavia Di Costa, 2012. "Identifying interdisciplinarity through the disciplinary classification of coauthors of scientific publications," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(11), pages 2206-2222, November.
    13. Giovanni Abramo & Ciriaco Andrea D'Angelo & Flavia Costa, 2012. "Identifying interdisciplinarity through the disciplinary classification of coauthors of scientific publications," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(11), pages 2206-2222, November.
    14. Rodriguez, Marko A. & Pepe, Alberto, 2008. "On the relationship between the structural and socioacademic communities of a coauthorship network," Journal of Informetrics, Elsevier, vol. 2(3), pages 195-201.
    15. David Minguillo, 2010. "Toward a new way of mapping scientific fields: Authors' competence for publishing in scholarly journals," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(4), pages 772-786, April.
    16. Antonio Perianes-Rodríguez & Carlos Olmeda-Gómez & Félix Moya-Anegón, 2010. "Detecting, identifying and visualizing research groups in co-authorship networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(2), pages 307-319, February.
    17. Richard Klavans & Kevin W. Boyack, 2009. "Toward a consensus map of science," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(3), pages 455-476, March.
    18. Wolfgang Glänzel & András Schubert, 2003. "A new classification scheme of science fields and subfields designed for scientometric evaluation purposes," Scientometrics, Springer;Akadémiai Kiadó, vol. 56(3), pages 357-367, March.
    19. Barabási, A.L & Jeong, H & Néda, Z & Ravasz, E & Schubert, A & Vicsek, T, 2002. "Evolution of the social network of scientific collaborations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 311(3), pages 590-614.
    20. Giovanni Abramo & Ciriaco Andrea D’Angelo, 2011. "National-scale research performance assessment at the individual level," Scientometrics, Springer;Akadémiai Kiadó, vol. 86(2), pages 347-364, February.
    21. Nees Jan Eck & Ludo Waltman, 2017. "Citation-based clustering of publications using CitNetExplorer and VOSviewer," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 1053-1070, May.
    22. Ruiz-Castillo, Javier & Waltman, Ludo, 2015. "Field-normalized citation impact indicators using algorithmically constructed classification systems of science," Journal of Informetrics, Elsevier, vol. 9(1), pages 102-117.
    23. Henk F. Moed & Gali Halevi, 2014. "A bibliometric approach to tracking international scientific migration," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(3), pages 1987-2001, December.
    24. Abramo, Giovanni & D’Angelo, Ciriaco Andrea & Murgia, Gianluca, 2013. "The collaboration behaviors of scientists in Italy: A field level analysis," Journal of Informetrics, Elsevier, vol. 7(2), pages 442-454.
    25. Félix Moya-Anegón & Benjamín Vargas-Quesada & Victor Herrero-Solana & Zaida Chinchilla-Rodríguez & Elena Corera-Álvarez & Francisco J. Munoz-Fernández, 2004. "A new technique for building maps of large scientific domains based on the cocitation of classes and categories," Scientometrics, Springer;Akadémiai Kiadó, vol. 61(1), pages 129-145, September.
    26. van Eck, N.J.P. & Waltman, L., 2009. "VOSviewer: A Computer Program for Bibliometric Mapping," ERIM Report Series Research in Management ERS-2009-005-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    27. Loet Leydesdorff & Ismael Rafols, 2009. "A global map of science based on the ISI subject categories," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(2), pages 348-362, February.
    28. Ed C. M. Noyons & Clara Calero-Medina, 2009. "Applying bibliometric mapping in a high level science policy context," Scientometrics, Springer;Akadémiai Kiadó, vol. 79(2), pages 261-275, May.
    29. Loet Leydesdorff, 2007. "Betweenness centrality as an indicator of the interdisciplinarity of scientific journals," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(9), pages 1303-1319, July.
    30. Waltman, Ludo & van Eck, Nees Jan & Noyons, Ed C.M., 2010. "A unified approach to mapping and clustering of bibliometric networks," Journal of Informetrics, Elsevier, vol. 4(4), pages 629-635.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karimi, Fatemeh & Lotfi, Shahriar & Izadkhah, Habib, 2021. "Community-guided link prediction in multiplex networks," Journal of Informetrics, Elsevier, vol. 15(4).
    2. Chiara Carusi & Giuseppe Bianchi, 2020. "A look at interdisciplinarity using bipartite scholar/journal networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 867-894, February.
    3. Tian, Yunpei & Li, Gang & Mao, Jin, 2023. "Predicting the evolution of scientific communities by interpretable machine learning approaches," Journal of Informetrics, Elsevier, vol. 17(2).
    4. Wu, Yujia & Lan, Wei & Fan, Xinyan & Fang, Kuangnan, 2024. "Bipartite network influence analysis of a two-mode network," Journal of Econometrics, Elsevier, vol. 239(2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiara Carusi & Giuseppe Bianchi, 2020. "A look at interdisciplinarity using bipartite scholar/journal networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(2), pages 867-894, February.
    2. Alfonso Ávila-Robinson & Cristian Mejia & Shintaro Sengoku, 2021. "Are bibliometric measures consistent with scientists’ perceptions? The case of interdisciplinarity in research," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7477-7502, September.
    3. Abramo, Giovanni & D’Angelo, Ciriaco Andrea & Zhang, Lin, 2018. "A comparison of two approaches for measuring interdisciplinary research output: The disciplinary diversity of authors vs the disciplinary diversity of the reference list," Journal of Informetrics, Elsevier, vol. 12(4), pages 1182-1193.
    4. Ricardo Arencibia-Jorge & Rosa Lidia Vega-Almeida & José Luis Jiménez-Andrade & Humberto Carrillo-Calvet, 2022. "Evolutionary stages and multidisciplinary nature of artificial intelligence research," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5139-5158, September.
    5. Jielan Ding & Per Ahlgren & Liying Yang & Ting Yue, 2018. "Disciplinary structures in Nature, Science and PNAS: journal and country levels," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1817-1852, September.
    6. Giulio Giacomo Cantone, 2024. "How to measure interdisciplinary research? A systemic design for the model of measurement," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(8), pages 4937-4982, August.
    7. Sjögårde, Peter & Ahlgren, Per, 2018. "Granularity of algorithmically constructed publication-level classifications of research publications: Identification of topics," Journal of Informetrics, Elsevier, vol. 12(1), pages 133-152.
    8. Urdiales, Cristina & Guzmán, Eduardo, 2024. "An automatic and association-based procedure for hierarchical publication subject categorization," Journal of Informetrics, Elsevier, vol. 18(1).
    9. Jochen Gläser & Wolfgang Glänzel & Andrea Scharnhorst, 2017. "Same data—different results? Towards a comparative approach to the identification of thematic structures in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 981-998, May.
    10. Juan Miguel Campanario, 2018. "Are leaders really leading? Journals that are first in Web of Science subject categories in the context of their groups," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(1), pages 111-130, April.
    11. Lin Zhang & Beibei Sun & Fei Shu & Ying Huang, 2022. "Comparing paper level classifications across different methods and systems: an investigation of Nature publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7633-7651, December.
    12. Sitaram Devarakonda & Dmitriy Korobskiy & Tandy Warnow & George Chacko, 2020. "Viewing computer science through citation analysis: Salton and Bergmark Redux," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 271-287, October.
    13. Wang, Qi & Waltman, Ludo, 2016. "Large-scale analysis of the accuracy of the journal classification systems of Web of Science and Scopus," Journal of Informetrics, Elsevier, vol. 10(2), pages 347-364.
    14. Ugo Moschini & Elena Fenialdi & Cinzia Daraio & Giancarlo Ruocco & Elisa Molinari, 2020. "A comparison of three multidisciplinarity indices based on the diversity of Scopus subject areas of authors’ documents, their bibliography and their citing papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(2), pages 1145-1158, November.
    15. Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
    16. Perianes-Rodriguez, Antonio & Ruiz-Castillo, Javier, 2017. "A comparison of the Web of Science and publication-level classification systems of science," Journal of Informetrics, Elsevier, vol. 11(1), pages 32-45.
    17. Waltman, Ludo, 2016. "A review of the literature on citation impact indicators," Journal of Informetrics, Elsevier, vol. 10(2), pages 365-391.
    18. Ismael Rafols & Alan Porter & Loet Leydesdorff, 2009. "Overlay Maps of Science: a New Tool for Research Policy," SPRU Working Paper Series 179, SPRU - Science Policy Research Unit, University of Sussex Business School.
    19. Hric, Darko & Kaski, Kimmo & Kivelä, Mikko, 2018. "Stochastic block model reveals maps of citation patterns and their evolution in time," Journal of Informetrics, Elsevier, vol. 12(3), pages 757-783.
    20. Loet Leydesdorff & Lutz Bornmann & Caroline S. Wagner, 2017. "Generating clustered journal maps: an automated system for hierarchical classification," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(3), pages 1601-1614, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:13:y:2019:i:1:p:354-386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.