[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v30y2014i3p407-414.html
   My bibliography  Save this article

Prediction in a spatial nested error components panel data model

Author

Listed:
  • Baltagi, Badi H.
  • Pirotte, Alain
Abstract
This paper derives the Best Linear Unbiased Predictor (BLUP) for a spatial nested error components panel data model. This predictor is useful for panel data applications that exhibit spatial dependence and a nested (hierarchical) structure. The predictor allows for unbalancedness in the number of observations in the nested groups. One application includes forecasting average housing prices located in a county nested in a state. When deriving the BLUP, we take into account the spatial correlation across counties, as well as the unbalancedness due to observing different numbers of counties nested in each state. Ignoring the nested spatial structure leads to inefficiency and inferior forecasts. Using Monte Carlo simulations, we show that our feasible predictor is better in root mean square error performance than the usual fixed and random effects panel predictors which ignore the spatial nested structure of the data.

Suggested Citation

  • Baltagi, Badi H. & Pirotte, Alain, 2014. "Prediction in a spatial nested error components panel data model," International Journal of Forecasting, Elsevier, vol. 30(3), pages 407-414.
  • Handle: RePEc:eee:intfor:v:30:y:2014:i:3:p:407-414
    DOI: 10.1016/j.ijforecast.2013.11.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207014000041
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2013.11.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-533, May.
    2. Badi H. Baltagi & Bernard Fingleton & Alain Pirotte, 2014. "Estimating and Forecasting with a Dynamic Spatial Panel Data Model," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(1), pages 112-138, February.
    3. Seuck Song & Byoung Jung, 2002. "BLUP in the panel regression model with spatially and serially correlated error components," Statistical Papers, Springer, vol. 43(4), pages 551-566, October.
    4. H. Baltagi, Badi & Heun Song, Seuck & Cheol Jung, Byoung, 2001. "The unbalanced nested error component regression model," Journal of Econometrics, Elsevier, vol. 101(2), pages 357-381, April.
    5. Badi H. Baltagi, 2008. "Forecasting with panel data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(2), pages 153-173.
    6. Manfred M. Fischer & Arthur Getis (ed.), 2010. "Handbook of Applied Spatial Analysis," Springer Books, Springer, number 978-3-642-03647-7, December.
    7. Baltagi, Badi H. & Pirotte, Alain, 2010. "Panel data inference under spatial dependence," Economic Modelling, Elsevier, vol. 27(6), pages 1368-1381, November.
    8. Baltagi, Badi H. & Bresson, Georges & Pirotte, Alain, 2012. "Forecasting with spatial panel data," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3381-3397.
    9. Nerlove, Marc, 1971. "Further Evidence on the Estimation of Dynamic Economic Relations from a Time Series of Cross Sections," Econometrica, Econometric Society, vol. 39(2), pages 359-382, March.
    10. Baltagi, Badi H. & Chang, Young-Jae, 1994. "Incomplete panels : A comparative study of alternative estimators for the unbalanced one-way error component regression model," Journal of Econometrics, Elsevier, vol. 62(2), pages 67-89, June.
    11. László Mátyás & Patrick Sevestre (ed.), 2008. "The Econometrics of Panel Data," Advanced Studies in Theoretical and Applied Econometrics, Springer, number 978-3-540-75892-1.
    12. Badi Baltagi & Dong Li, 2006. "Prediction in the Panel Data Model with Spatial Correlation: the Case of Liquor," Spatial Economic Analysis, Taylor & Francis Journals, vol. 1(2), pages 175-185.
    13. Konstantin Arkadievich Kholodilin & Boriss Siliverstovs & Stefan Kooths, 2008. "A Dynamic Panel Data Approach to the Forecasting of the GDP of German Länder," Spatial Economic Analysis, Taylor & Francis Journals, vol. 3(2), pages 195-207.
    14. Badi H. Baltagi & Dong Li, 2004. "Prediction in the Panel Data Model with Spatial Correlation," Advances in Spatial Science, in: Luc Anselin & Raymond J. G. M. Florax & Sergio J. Rey (ed.), Advances in Spatial Econometrics, chapter 13, pages 283-295, Springer.
    15. Swamy, P A V B & Arora, S S, 1972. "The Exact Finite Sample Properties of the Estimators of Coefficients in the Error Components Regression Models," Econometrica, Econometric Society, vol. 40(2), pages 261-275, March.
    16. Baltagi, Badi H., 2013. "Panel Data Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 995-1024, Elsevier.
    17. Badi H. Baltagi & Alain Pirotte, 2013. "Prediction in an Unbalanced Nested Error Components Panel Data Model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(8), pages 755-768, December.
    18. J. Paul Elhorst, 2003. "Specification and Estimation of Spatial Panel Data Models," International Regional Science Review, , vol. 26(3), pages 244-268, July.
    19. Eric Girardin & Konstantin A. Kholodilin, 2011. "How helpful are spatial effects in forecasting the growth of Chinese provinces?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(7), pages 622-643, November.
    20. Simonetta Longhi & Peter Nijkamp, 2007. "Forecasting Regional Labor Market Developments under Spatial Autocorrelation," International Regional Science Review, , vol. 30(2), pages 100-119, April.
    21. Antweiler, Werner, 2001. "Nested random effects estimation in unbalanced panel data," Journal of Econometrics, Elsevier, vol. 101(2), pages 295-313, April.
    22. Taub, Allan J., 1979. "Prediction in the context of the variance-components model," Journal of Econometrics, Elsevier, vol. 10(1), pages 103-107, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baltagi, Badi H., 2013. "Panel Data Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 995-1024, Elsevier.
    2. Badi H. Baltagi & Bernard Fingleton & Alain Pirotte, 2014. "Estimating and Forecasting with a Dynamic Spatial Panel Data Model," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(1), pages 112-138, February.
    3. Baltagi, Badi H. & Fingleton, Bernard & Pirotte, Alain, 2019. "A time-space dynamic panel data model with spatial moving average errors," Regional Science and Urban Economics, Elsevier, vol. 76(C), pages 13-31.
    4. Ana Angulo & Jesús Mur & Javier Trivez, 2014. "Measure of the resilience to Spanish economic crisis: the role of specialization," Economics and Business Letters, Oviedo University Press, vol. 3(4), pages 263-275.
    5. Semerikova, Elena & Demidova, Olga, 2016. "Using spatial econometric models for regional unemployment forecasting," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 43, pages 29-51.
    6. Baltagi, Badi H. & Bresson, Georges & Pirotte, Alain, 2012. "Forecasting with spatial panel data," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3381-3397.
    7. Anna Gloria Billé & Alessio Tomelleri & Francesco Ravazzolo, 2023. "Forecasting regional GDPs: a comparison with spatial dynamic panel data models," Spatial Economic Analysis, Taylor & Francis Journals, vol. 18(4), pages 530-551, October.
    8. Su, Liangjun & Yang, Zhenlin, 2015. "QML estimation of dynamic panel data models with spatial errors," Journal of Econometrics, Elsevier, vol. 185(1), pages 230-258.
    9. Fadhuile, A., 2018. "Can we explain pesticide price trend by the regulation changes ?," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277112, International Association of Agricultural Economists.
    10. W. Saart, Patrick & Kim, Namhyun & Bateman, Ian, 2021. "Modeling and predicting agricultural land use in England based on spatially high-resolution data," Cardiff Economics Working Papers E2021/7, Cardiff University, Cardiff Business School, Economics Section.
    11. Baltagi, Badi H. & Fingleton, Bernard & Pirotte, Alain, 2014. "Spatial lag models with nested random effects: An instrumental variable procedure with an application to English house prices," Journal of Urban Economics, Elsevier, vol. 80(C), pages 76-86.
    12. W. Saart, Patrick & Kim, Namhyun & Bateman, Ian, 2021. "Understanding spatial heterogeneity in GB agricultural land-use for improved policy targeting," Cardiff Economics Working Papers E2021/8, Cardiff University, Cardiff Business School, Economics Section.
    13. Ana Angulo & Jesús Mur & Javier Trívez, 2013. "Forecasting heterogeneous regional data: the case of European employment," ERSA conference papers ersa13p953, European Regional Science Association.
    14. Akgun, Oguzhan & Pirotte, Alain & Urga, Giovanni, 2020. "Forecasting using heterogeneous panels with cross-sectional dependence," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1211-1227.
    15. Jean-Sauveur Ay & Raja Chakir & Julie Le Gallo, 2014. "The effects of scale, space and time on the predictive accuracy of land use models," Working Papers 2014/02, INRA, Economie Publique.
    16. Nina Vujanovic & Bruno Casella & Richard Bolwijn, . "Forecasting global FDI: a panel data approach," UNCTAD Transnational Corporations Journal, United Nations Conference on Trade and Development.
    17. A. M. Angulo & J. Mur & F. J. Trívez, 2018. "Measuring resilience to economic shocks: an application to Spain," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 60(2), pages 349-373, March.
    18. Fingleton, Bernard, 2010. "Predicting the geography of house prices," LSE Research Online Documents on Economics 33507, London School of Economics and Political Science, LSE Library.
    19. Badi H. Baltagi, 2008. "Forecasting with panel data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(2), pages 153-173.
    20. Debarsy, Nicolas & Ertur, Cem, 2010. "Testing for spatial autocorrelation in a fixed effects panel data model," Regional Science and Urban Economics, Elsevier, vol. 40(6), pages 453-470, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:30:y:2014:i:3:p:407-414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.