[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v52y2023ics1544612322007000.html
   My bibliography  Save this article

Do macroeconomic variables drive exchange rates independently?

Author

Listed:
  • Biswas, Rita
  • Li, Xiao
  • Piccotti, Louis R.
Abstract
The classical practice in exchange rate model estimation is to use bilateral differentials of macroeconomic variables. Empirically, capital may not place equal importance on the economic variables among all countries. Therefore, allowing each country's variable to enter the model independently may reduce estimation error. Based on simulations, we find that higher correlations between the two countries’ variables tend to inflate prediction errors when the estimation uses bilateral differentials. Applying the Sticky Price Monetary Model (SPMM) to a wide range of countries we find supportive evidence for separating the variables, a finding especially relevant for smaller economies.

Suggested Citation

  • Biswas, Rita & Li, Xiao & Piccotti, Louis R., 2023. "Do macroeconomic variables drive exchange rates independently?," Finance Research Letters, Elsevier, vol. 52(C).
  • Handle: RePEc:eee:finlet:v:52:y:2023:i:c:s1544612322007000
    DOI: 10.1016/j.frl.2022.103524
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612322007000
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2022.103524?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiahan Li & Ilias Tsiakas & Wei Wang, 2015. "Predicting Exchange Rates Out of Sample: Can Economic Fundamentals Beat the Random Walk?," Journal of Financial Econometrics, Oxford University Press, vol. 13(2), pages 293-341.
    2. Cheung, Yin-Wong & Chinn, Menzie D. & Pascual, Antonio Garcia & Zhang, Yi, 2019. "Exchange rate prediction redux: New models, new data, new currencies," Journal of International Money and Finance, Elsevier, vol. 95(C), pages 332-362.
    3. Richard Meese & Kenneth Rogoff, 1983. "The Out-of-Sample Failure of Empirical Exchange Rate Models: Sampling Error or Misspecification?," NBER Chapters, in: Exchange Rates and International Macroeconomics, pages 67-112, National Bureau of Economic Research, Inc.
    4. Amat, Christophe & Michalski, Tomasz & Stoltz, Gilles, 2018. "Fundamentals and exchange rate forecastability with simple machine learning methods," Journal of International Money and Finance, Elsevier, vol. 88(C), pages 1-24.
    5. Barbara Rossi, 2013. "Exchange Rate Predictability," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1063-1119, December.
    6. Vasilios Plakandaras & Theophilos Papadimitriou & Periklis Gogas, 2015. "Forecasting Daily and Monthly Exchange Rates with Machine Learning Techniques," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(7), pages 560-573, November.
    7. Cheung, Yin-Wong & Chinn, Menzie D. & Pascual, Antonio Garcia, 2005. "Empirical exchange rate models of the nineties: Are any fit to survive?," Journal of International Money and Finance, Elsevier, vol. 24(7), pages 1150-1175, November.
    8. Meese, Richard A. & Rogoff, Kenneth, 1983. "Empirical exchange rate models of the seventies : Do they fit out of sample?," Journal of International Economics, Elsevier, vol. 14(1-2), pages 3-24, February.
    9. Mark, Nelson C. & Sul, Donggyu, 2001. "Nominal exchange rates and monetary fundamentals: Evidence from a small post-Bretton woods panel," Journal of International Economics, Elsevier, vol. 53(1), pages 29-52, February.
    10. Benjamin J. C. Kim & David Karemera, 2006. "Assessing the forecasting accuracy of alternative nominal exchange rate models: the case of long memory," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(5), pages 369-380.
    11. Ribeiro, Pinho J., 2017. "Selecting exchange rate fundamentals by bootstrap," International Journal of Forecasting, Elsevier, vol. 33(4), pages 894-914.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Yu & Liang, Xuanxuan & Wang, Qin, 2021. "Short-term exchange rate forecasting: A panel combination approach," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 73(C).
    2. Amat, Christophe & Michalski, Tomasz & Stoltz, Gilles, 2018. "Fundamentals and exchange rate forecastability with simple machine learning methods," Journal of International Money and Finance, Elsevier, vol. 88(C), pages 1-24.
    3. Feng, Wenjun & Zhang, Zhengjun, 2023. "Currency exchange rate predictability: The new power of Bitcoin prices," Journal of International Money and Finance, Elsevier, vol. 132(C).
    4. Colombo, Emilio & Pelagatti, Matteo, 2020. "Statistical learning and exchange rate forecasting," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1260-1289.
    5. Iregui, Ana María & Núñez, Héctor M. & Otero, Jesús, 2021. "Testing the efficiency of inflation and exchange rate forecast revisions in a changing economic environment," Journal of Economic Behavior & Organization, Elsevier, vol. 187(C), pages 290-314.
    6. Jackson, Karen & Magkonis, Georgios, 2024. "Exchange rate predictability: Fact or fiction?," Journal of International Money and Finance, Elsevier, vol. 142(C).
    7. Stijn Claessens & M Ayhan Kose, 2017. "Asset prices and macroeconomic outcomes: a survey," BIS Working Papers 676, Bank for International Settlements.
    8. Kharrat, Sabrine & Hammami, Yacine & Fatnassi, Ibrahim, 2020. "On the cross-sectional relation between exchange rates and future fundamentals," Economic Modelling, Elsevier, vol. 89(C), pages 484-501.
    9. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    10. Wang, Wenhao & Cheung, Yin-Wong, 2023. "Commodity price effects on currencies," Journal of International Money and Finance, Elsevier, vol. 130(C).
    11. Pincheira-Brown, Pablo & Neumann, Federico, 2020. "Can we beat the Random Walk? The case of survey-based exchange rate forecasts in Chile," Finance Research Letters, Elsevier, vol. 37(C).
    12. Stijn Claessens & M Ayhan Kose, 2018. "Frontiers of macrofinancial linkages," BIS Papers, Bank for International Settlements, number 95.
    13. Breen, John David & Hu, Liang, 2021. "The predictive content of oil price and volatility: New evidence on exchange rate forecasting," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 75(C).
    14. Martin Casta, 2022. "How Credit Improves the Exchange Rate Forecast," Working Papers 2022/7, Czech National Bank.
    15. Gürkaynak, Refet S. & Kısacıkoğlu, Burçin & Lee, Sang Seok, 2022. "Exchange rate and inflation under weak monetary policy: Turkey verifies theory," CFS Working Paper Series 679, Center for Financial Studies (CFS).
    16. Philippe Bacchetta & Eric van Wincoop & Toni Beutler, 2010. "Can Parameter Instability Explain the Meese-Rogoff Puzzle?," NBER International Seminar on Macroeconomics, University of Chicago Press, vol. 6(1), pages 125-173.
    17. Joseph P. Byrne & Dimitris Korobilis & Pinho J. Ribeiro, 2018. "On The Sources Of Uncertainty In Exchange Rate Predictability," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 59(1), pages 329-357, February.
    18. Ahmed, Shamim & Liu, Xiaoquan & Valente, Giorgio, 2016. "Can currency-based risk factors help forecast exchange rates?," International Journal of Forecasting, Elsevier, vol. 32(1), pages 75-97.
    19. Christopher J. Neely & Lucio Sarno, 2002. "How well do monetary fundamentals forecast exchange rates?," Review, Federal Reserve Bank of St. Louis, vol. 84(Sep), pages 51-74.
    20. Kenneth S. Rogoff & Vania Stavrakeva, 2008. "The Continuing Puzzle of Short Horizon Exchange Rate Forecasting," NBER Working Papers 14071, National Bureau of Economic Research, Inc.

    More about this item

    Keywords

    Exchange rate determination; Macro fundamental models; Machine learning regression; Elastic net;
    All these keywords.

    JEL classification:

    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:52:y:2023:i:c:s1544612322007000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.