[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v302y2022i1p1-38.html
   My bibliography  Save this article

Hazardous material transportation problems: A comprehensive overview of models and solution approaches

Author

Listed:
  • Mohri, Seyed Sina
  • Mohammadi, Mehrdad
  • Gendreau, Michel
  • Pirayesh, Amir
  • Ghasemaghaei, Ali
  • Salehi, Vahid
Abstract
This paper provides a comprehensive review in the domain of hazardous material transportation from an Operational Research point of view. The paper's focus lies on hazmat routing, routing-scheduling, and network design problems. The objective of this review paper is twofold: (1) reviewing the models’ assumptions, objectives and constraints, decisions, input parameters, basic modeling/solution techniques, and case studies, and (2) highlighting the underlying features and challenges in designing the models with different transportation modes. Besides, the most significant research gaps in the literature are identified through a systematic in-depth review at a micro-level. Finally, a set of promising future research directions is proposed upon from the authorities could draw better decisions. As a key finding after performing this review, we believe that a considerable number of promising future research directions consist in hybridizing different problems, i.e., amount to borrowing some key properties from a problem and integrating them into another problem. This has led to valuable research studies in the literature of hazmat transportation problems.

Suggested Citation

  • Mohri, Seyed Sina & Mohammadi, Mehrdad & Gendreau, Michel & Pirayesh, Amir & Ghasemaghaei, Ali & Salehi, Vahid, 2022. "Hazardous material transportation problems: A comprehensive overview of models and solution approaches," European Journal of Operational Research, Elsevier, vol. 302(1), pages 1-38.
  • Handle: RePEc:eee:ejores:v:302:y:2022:i:1:p:1-38
    DOI: 10.1016/j.ejor.2021.11.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721009966
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.11.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yingying Kang & Rajan Batta & Changhyun Kwon, 2014. "Value-at-Risk model for hazardous material transportation," Annals of Operations Research, Springer, vol. 222(1), pages 361-387, November.
    2. Zografos, Konstantinos G. & Androutsopoulos, Konstantinos N., 2004. "A heuristic algorithm for solving hazardous materials distribution problems," European Journal of Operational Research, Elsevier, vol. 152(2), pages 507-519, January.
    3. Patel, Minnie H. & Horowitz, Alan J., 1994. "Optimal routing of hazardous materials considering risk of spill," Transportation Research Part A: Policy and Practice, Elsevier, vol. 28(2), pages 119-132, March.
    4. Dadkar, Yashoda & Jones, Dean & Nozick, Linda, 2008. "Identifying geographically diverse routes for the transportation of hazardous materials," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(3), pages 333-349, May.
    5. Patrice Marcotte & Anne Mercier & Gilles Savard & Vedat Verter, 2009. "Toll Policies for Mitigating Hazardous Materials Transport Risk," Transportation Science, INFORMS, vol. 43(2), pages 228-243, May.
    6. William Dudley, 2012. "The national and regional economy," Speech 92, Federal Reserve Bank of New York.
    7. Charles ReVelle & Jared Cohon & Donald Shobrys, 1991. "Simultaneous Siting and Routing in the Disposal of Hazardous Wastes," Transportation Science, INFORMS, vol. 25(2), pages 138-145, May.
    8. Kumar, Anand & Roy, Debjit & Verter, Vedat & Sharma, Dheeraj, 2018. "Integrated fleet mix and routing decision for hazmat transportation: A developing country perspective," European Journal of Operational Research, Elsevier, vol. 264(1), pages 225-238.
    9. Mihaela ION, 2014. "National And Cross-Border Mergers. Conceptual Demarcations," Perspectives of Law and Public Administration, Societatea de Stiinte Juridice si Administrative (Society of Juridical and Administrative Sciences), vol. 3(1), pages 198-208, December.
    10. Mehrdad Mohammadi & Stéphane Dauzère-Pérès & Claude Yugma, 2019. "Performance evaluation of single and multi-class production systems using an approximating queuing network," International Journal of Production Research, Taylor & Francis Journals, vol. 57(5), pages 1497-1523, March.
    11. Tsung-Sheng Chang & Linda K. Nozick & Mark A. Turnquist, 2005. "Multiobjective Path Finding in Stochastic Dynamic Networks, with Application to Routing Hazardous Materials Shipments," Transportation Science, INFORMS, vol. 39(3), pages 383-399, August.
    12. Bronfman, Andrés & Marianov, Vladimir & Paredes-Belmar, Germán & Lüer-Villagra, Armin, 2015. "The maximin HAZMAT routing problem," European Journal of Operational Research, Elsevier, vol. 241(1), pages 15-27.
    13. Karimi-Mamaghan, Maryam & Mohammadi, Mehrdad & Pirayesh, Amir & Karimi-Mamaghan, Amir Mohammad & Irani, Hassan, 2020. "Hub-and-spoke network design under congestion: A learning based metaheuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    14. Serafini, Paolo, 2006. "Dynamic programming and minimum risk paths," European Journal of Operational Research, Elsevier, vol. 175(1), pages 224-237, November.
    15. Ram Gopalan & Krishna S. Kolluri & Rajan Batta & Mark H. Karwan, 1990. "Modeling Equity of Risk in the Transportation of Hazardous Materials," Operations Research, INFORMS, vol. 38(6), pages 961-973, December.
    16. Mohammadi, Mehrdad & Jula, Payman & Tavakkoli-Moghaddam, Reza, 2019. "Reliable single-allocation hub location problem with disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 123(C), pages 90-120.
    17. Amirsaman Kheirkhah & HamidReza Navidi & Masume Messi Bidgoli, 2016. "A bi-level network interdiction model for solving the hazmat routing problem," International Journal of Production Research, Taylor & Francis Journals, vol. 54(2), pages 459-471, January.
    18. Ali Timajchi & Seyed Mohammad Javad Mirzapour Al-E-Hashem & Yacine Rekik, 2019. "Inventory routing problem for hazardous and deteriorating items in the presence of accident risk with transshipment option," Post-Print hal-02312116, HAL.
    19. Francisco López-Ramos & Stefano Nasini & Armando Guarnaschelli, 2019. "Road network pricing and design for ordinary and hazmat vehicles: Integrated model and specialized local search," Post-Print hal-02510066, HAL.
    20. Erhan Erkut & Armann Ingolfsson, 2000. "Catastrophe Avoidance Models for Hazardous Materials Route Planning," Transportation Science, INFORMS, vol. 34(2), pages 165-179, May.
    21. Garrido, Rodrigo A. & Bronfman, Andrés C., 2017. "Equity and social acceptability in multiple hazardous materials routing through urban areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 244-260.
    22. Vedat Verter & Erhan Erkut, 1997. "Incorporating Insurance Costs in Hazardous Materials Routing Models," Transportation Science, INFORMS, vol. 31(3), pages 227-236, August.
    23. Hanif D. Sherali & Laora D. Brizendine & Theodore S. Glickman & Shivaram Subramanian, 1997. "Low Probability---High Consequence Considerations in Routing Hazardous Material Shipments," Transportation Science, INFORMS, vol. 31(3), pages 237-251, August.
    24. Raj A. Sivakumar & Rajan Batta, 1994. "The Variance-Constrained Shortest Path Problem," Transportation Science, INFORMS, vol. 28(4), pages 309-316, November.
    25. Assadipour, Ghazal & Ke, Ginger Y. & Verma, Manish, 2015. "Planning and managing intermodal transportation of hazardous materials with capacity selection and congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 76(C), pages 45-57.
    26. Michael Grömling & Markus Taube & Jürgen Jerger, 2014. "Aufstieg und Niedergang von Nationen," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 67(14), pages 03-14, July.
    27. Bahar Y. Kara & Vedat Verter, 2004. "Designing a Road Network for Hazardous Materials Transportation," Transportation Science, INFORMS, vol. 38(2), pages 188-196, May.
    28. Mohammadi, Mehrdad & Jula, Payman & Tavakkoli-Moghaddam, Reza, 2017. "Design of a reliable multi-modal multi-commodity model for hazardous materials transportation under uncertainty," European Journal of Operational Research, Elsevier, vol. 257(3), pages 792-809.
    29. Dadkar, Yashoda & Nozick, Linda & Jones, Dean, 2010. "Optimizing facility use restrictions for the movement of hazardous materials," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 267-281, February.
    30. Jabbarzadeh, Armin & Azad, Nader & Verma, Manish, 2020. "An optimization approach to planning rail hazmat shipments in the presence of random disruptions," Omega, Elsevier, vol. 96(C).
    31. Ke, Ginger Y. & Zhang, Huiwen & Bookbinder, James H., 2020. "A dual toll policy for maintaining risk equity in hazardous materials transportation with fuzzy incident rate," International Journal of Production Economics, Elsevier, vol. 227(C).
    32. George F. List & Pitu B. Mirchandani & Mark A. Turnquist & Konstantinos G. Zografos, 1991. "Modeling and Analysis for Hazardous Materials Transportation: Risk Analysis, Routing/Scheduling and Facility Location," Transportation Science, INFORMS, vol. 25(2), pages 100-114, May.
    33. Verma, Manish & Verter, Vedat & Zufferey, Nicolas, 2012. "A bi-objective model for planning and managing rail-truck intermodal transportation of hazardous materials," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 132-149.
    34. Mohri, Seyed Sina & Asgari, Nasrin & Zanjirani Farahani, Reza & Bourlakis, Michael & Laker, Benjamin, 2020. "Fairness in hazmat routing-scheduling: A bi-objective Stackelberg game," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    35. Jiahong Zhao & Fumin Zhu, 2016. "A multi-depot vehicle-routing model for the explosive waste recycling," International Journal of Production Research, Taylor & Francis Journals, vol. 54(2), pages 550-563, January.
    36. Timajchi, Ali & Mirzapour Al-e-Hashem, Seyed M.J. & Rekik, Yacine, 2019. "Inventory routing problem for hazardous and deteriorating items in the presence of accident risk with transshipment option," International Journal of Production Economics, Elsevier, vol. 209(C), pages 302-315.
    37. Bronfman, Andrés & Marianov, Vladimir & Paredes-Belmar, Germán & Lüer-Villagra, Armin, 2016. "The maxisum and maximin-maxisum HAZMAT routing problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 316-333.
    38. Fontaine, Pirmin & Minner, Stefan, 2018. "Benders decomposition for the Hazmat Transport Network Design Problem," European Journal of Operational Research, Elsevier, vol. 267(3), pages 996-1002.
    39. Manish Verma & Vedat Verter & Michel Gendreau, 2011. "A Tactical Planning Model for Railroad Transportation of Dangerous Goods," Transportation Science, INFORMS, vol. 45(2), pages 163-174, May.
    40. Reilly, Allison & Nozick, Linda & Xu, Ningxiong & Jones, Dean, 2012. "Game theory-based identification of facility use restrictions for the movement of hazardous materials under terrorist threat," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 115-131.
    41. Giampiero E. G. Beroggi & William A. Wallace, 1995. "Operational Control of the Transportation of Hazardous Materials: An Assessment of Alternative Decision Models," Management Science, INFORMS, vol. 41(12), pages 1962-1977, December.
    42. Shahrzad Faghih-Roohi & Yew-Soon Ong & Sobhan Asian & Allan N. Zhang, 2016. "Dynamic conditional value-at-risk model for routing and scheduling of hazardous material transportation networks," Annals of Operations Research, Springer, vol. 247(2), pages 715-734, December.
    43. Verma, Manish & Verter, Vedat, 2010. "A lead-time based approach for planning rail-truck intermodal transportation of dangerous goods," European Journal of Operational Research, Elsevier, vol. 202(3), pages 696-706, May.
    44. Liu Su & Changhyun Kwon, 2020. "Risk-Averse Network Design with Behavioral Conditional Value-at-Risk for Hazardous Materials Transportation," Transportation Science, INFORMS, vol. 54(1), pages 184-203, January.
    45. Vedat Verter & Bahar Y. Kara, 2008. "A Path-Based Approach for Hazmat Transport Network Design," Management Science, INFORMS, vol. 54(1), pages 29-40, January.
    46. Ma, Hong & Cheang, Brenda & Lim, Andrew & Zhang, Lei & Zhu, Yi, 2012. "An investigation into the vehicle routing problem with time windows and link capacity constraints," Omega, Elsevier, vol. 40(3), pages 336-347.
    47. ., 2014. "The German national innovation ecosystem," Chapters, in: Mapping National Innovation Ecosystems, chapter 5, pages 83-103, Edward Elgar Publishing.
    48. Esfandeh, Tolou & Kwon, Changhyun & Batta, Rajan, 2016. "Regulating hazardous materials transportation by dual toll pricing," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 20-35.
    49. Karkazis, J. & Boffey, T. B., 1995. "Optimal location of routes for vehicles transporting hazardous materials," European Journal of Operational Research, Elsevier, vol. 86(2), pages 201-215, October.
    50. ., 2014. "The Singaporean national innovation ecosystem," Chapters, in: Mapping National Innovation Ecosystems, chapter 10, pages 191-209, Edward Elgar Publishing.
    51. Hosseini, S. Davod & Verma, Manish, 2018. "Conditional value-at-risk (CVaR) methodology to optimal train configuration and routing of rail hazmat shipments," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 79-103.
    52. David A. Nembhard & Chelsea C. White, 1997. "Applications of Non-Order-Preserving Path Selection of Hazmat Routing," Transportation Science, INFORMS, vol. 31(3), pages 262-271, August.
    53. ., 2014. "Extraterritorial application of national laws," Chapters, in: International Merger Policy, chapter 6, pages 135-156, Edward Elgar Publishing.
    54. Laurel Lindner-Dutton & Rajan Batta & Mark H. Karwan, 1991. "Equitable Sequencing of a Given Set of Hazardous Materials Shipments," Transportation Science, INFORMS, vol. 25(2), pages 124-137, May.
    55. Dell'Olmo, Paolo & Gentili, Monica & Scozzari, Andrea, 2005. "On finding dissimilar Pareto-optimal paths," European Journal of Operational Research, Elsevier, vol. 162(1), pages 70-82, April.
    56. ., 2014. "The Israeli national innovation ecosystem," Chapters, in: Mapping National Innovation Ecosystems, chapter 3, pages 42-63, Edward Elgar Publishing.
    57. Iakovos Toumazis & Changhyun Kwon, 2016. "Worst-Case Conditional Value-at-Risk Minimization for Hazardous Materials Transportation," Transportation Science, INFORMS, vol. 50(4), pages 1174-1187, November.
    58. Fang, Kan & Ke, Ginger Y. & Verma, Manish, 2017. "A routing and scheduling approach to rail transportation of hazardous materials with demand due dates," European Journal of Operational Research, Elsevier, vol. 261(1), pages 154-168.
    59. ., 2014. "The French national innovation ecosystem," Chapters, in: Mapping National Innovation Ecosystems, chapter 6, pages 104-118, Edward Elgar Publishing.
    60. Wijeratne, Ajith B. & Turnquist, Mark A. & Mirchandani, Pitu B., 1993. "Multiobjective routing of hazardous materials in stochastic networks," European Journal of Operational Research, Elsevier, vol. 65(1), pages 33-43, February.
    61. Fontaine, Pirmin & Crainic, Teodor Gabriel & Gendreau, Michel & Minner, Stefan, 2020. "Population-based risk equilibration for the multimode hazmat transport network design problem," European Journal of Operational Research, Elsevier, vol. 284(1), pages 188-200.
    62. ., 2014. "The Polish national innovation ecosystem," Chapters, in: Mapping National Innovation Ecosystems, chapter 4, pages 64-82, Edward Elgar Publishing.
    63. Honghua Jin & Rajan Batta & Mark H. Karwan, 1996. "On the Analysis of Two New Models for Transporting Hazardous Materials," Operations Research, INFORMS, vol. 44(5), pages 710-723, October.
    64. Karimi-Mamaghan, Maryam & Mohammadi, Mehrdad & Jula, Payman & Pirayesh, Amir & Ahmadi, Hadi, 2020. "A learning-based metaheuristic for a multi-objective agile inspection planning model under uncertainty," European Journal of Operational Research, Elsevier, vol. 285(2), pages 513-537.
    65. Rajan Batta & Samuel S. Chiu, 1988. "Optimal Obnoxious Paths on a Network: Transportation of Hazardous Materials," Operations Research, INFORMS, vol. 36(1), pages 84-92, February.
    66. Grinevskaya S.M., 2014. "Tendencies of national economy socialization," Економічний вісник Донбасу Экономический вестник Донбасса, CyberLeninka;Институт экономики промышленности НАН Украины, issue 4 (38), pages 178-183.
    67. Linda K. Nozick & George F. List & Mark A. Turnquist, 1997. "Integrated Routing and Scheduling in Hazardous Materials Transportation," Transportation Science, INFORMS, vol. 31(3), pages 200-215, August.
    68. Szeto, W.Y. & Farahani, R.Z. & Sumalee, Agachai, 2017. "Link-based multi-class hazmat routing-scheduling problem: A multiple demon approach," European Journal of Operational Research, Elsevier, vol. 261(1), pages 337-354.
    69. Erhan Erkut & Osman Alp, 2007. "Integrated Routing and Scheduling of Hazmat Trucks with Stops En Route," Transportation Science, INFORMS, vol. 41(1), pages 107-122, February.
    70. Honghua Jin & Rajan Batta, 1997. "Objectives Derived form Viewing Hazmat Shipments as a Sequence of Independent Bernoulli Trials," Transportation Science, INFORMS, vol. 31(3), pages 252-261, August.
    71. Eleftherios Iakovou & Christos Douligeris & Huan Li & Chi Ip & Lalit Yudhbir, 1999. "A Maritime Global Route Planning Model for Hazardous Materials Transportation," Transportation Science, INFORMS, vol. 33(1), pages 34-48, February.
    72. Nozick, Linda K. & Morlok, Edward K., 1997. "A model for medium-term operations planning in an intermodal rail-truck service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 31(2), pages 91-107, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liping Liu & Jiaming Li & Lei Zhou & Tijun Fan & Shuxia Li, 2021. "Research on Route Optimization of Hazardous Materials Transportation Considering Risk Equity," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    2. Wu, Weitiao & Ma, Jian & Liu, Ronghui & Jin, Wenzhou, 2022. "Multi-class hazmat distribution network design with inventory and superimposed risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    3. Zhang, Meng & Wang, Nengmin & He, Zhengwen & Jiang, Bin, 2021. "Vehicle routing optimization for hazmat shipments considering catastrophe avoidance and failed edges," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    4. Fontaine, Pirmin & Crainic, Teodor Gabriel & Gendreau, Michel & Minner, Stefan, 2020. "Population-based risk equilibration for the multimode hazmat transport network design problem," European Journal of Operational Research, Elsevier, vol. 284(1), pages 188-200.
    5. Ditta, A. & Figueroa, O. & Galindo, G. & Yie-Pinedo, R., 2019. "A review on research in transportation of hazardous materials," Socio-Economic Planning Sciences, Elsevier, vol. 68(C).
    6. Bronfman, Andrés & Marianov, Vladimir & Paredes-Belmar, Germán & Lüer-Villagra, Armin, 2016. "The maxisum and maximin-maxisum HAZMAT routing problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 316-333.
    7. Bhavsar, Nishit & Verma, Manish, 2022. "A subsidy policy to managing hazmat risk in railroad transportation network," European Journal of Operational Research, Elsevier, vol. 300(2), pages 633-646.
    8. Fang, Kan & Ke, Ginger Y. & Verma, Manish, 2017. "A routing and scheduling approach to rail transportation of hazardous materials with demand due dates," European Journal of Operational Research, Elsevier, vol. 261(1), pages 154-168.
    9. Szeto, W.Y. & Farahani, R.Z. & Sumalee, Agachai, 2017. "Link-based multi-class hazmat routing-scheduling problem: A multiple demon approach," European Journal of Operational Research, Elsevier, vol. 261(1), pages 337-354.
    10. Kumar, Anand & Roy, Debjit & Verter, Vedat & Sharma, Dheeraj, 2018. "Integrated fleet mix and routing decision for hazmat transportation: A developing country perspective," European Journal of Operational Research, Elsevier, vol. 264(1), pages 225-238.
    11. Mohri, Seyed Sina & Asgari, Nasrin & Zanjirani Farahani, Reza & Bourlakis, Michael & Laker, Benjamin, 2020. "Fairness in hazmat routing-scheduling: A bi-objective Stackelberg game," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    12. Hosseini, S. Davod & Verma, Manish, 2018. "Conditional value-at-risk (CVaR) methodology to optimal train configuration and routing of rail hazmat shipments," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 79-103.
    13. Liu Su & Changhyun Kwon, 2020. "Risk-Averse Network Design with Behavioral Conditional Value-at-Risk for Hazardous Materials Transportation," Transportation Science, INFORMS, vol. 54(1), pages 184-203, January.
    14. Bronfman, Andrés & Marianov, Vladimir & Paredes-Belmar, Germán & Lüer-Villagra, Armin, 2015. "The maximin HAZMAT routing problem," European Journal of Operational Research, Elsevier, vol. 241(1), pages 15-27.
    15. Zhang, Lukai & Feng, Xuesong & Chen, Dalin & Zhu, Nan & Liu, Yi, 2019. "Designing a hazardous materials transportation network by a bi-level programming based on toll policies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    16. Misagh Rahbari & Alireza Arshadi Khamseh & Yaser Sadati-Keneti & Mohammad Javad Jafari, 2022. "A risk-based green location-inventory-routing problem for hazardous materials: NSGA II, MOSA, and multi-objective black widow optimization," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2804-2840, February.
    17. Yan Sun & Xinya Li & Xia Liang & Cevin Zhang, 2019. "A Bi-Objective Fuzzy Credibilistic Chance-Constrained Programming Approach for the Hazardous Materials Road-Rail Multimodal Routing Problem under Uncertainty and Sustainability," Sustainability, MDPI, vol. 11(9), pages 1-27, May.
    18. Mohammadi, Mehrdad & Jula, Payman & Tavakkoli-Moghaddam, Reza, 2017. "Design of a reliable multi-modal multi-commodity model for hazardous materials transportation under uncertainty," European Journal of Operational Research, Elsevier, vol. 257(3), pages 792-809.
    19. Zajac, Sandra & Huber, Sandra, 2021. "Objectives and methods in multi-objective routing problems: a survey and classification scheme," European Journal of Operational Research, Elsevier, vol. 290(1), pages 1-25.
    20. Ke, Ginger Y. & Zhang, Huiwen & Bookbinder, James H., 2020. "A dual toll policy for maintaining risk equity in hazardous materials transportation with fuzzy incident rate," International Journal of Production Economics, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:302:y:2022:i:1:p:1-38. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.