[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v295y2021i1p292-305.html
   My bibliography  Save this article

Deep learning for credit scoring: Do or don’t?

Author

Listed:
  • Gunnarsson, Björn Rafn
  • vanden Broucke, Seppe
  • Baesens, Bart
  • Óskarsdóttir, María
  • Lemahieu, Wilfried
Abstract
Developing accurate analytical credit scoring models has become a major focus for financial institutions. For this purpose, numerous classification algorithms have been proposed for credit scoring. However, the application of deep learning algorithms for classification has been largely ignored in the credit scoring literature. The main motivation for this research is to consider the appropriateness of deep learning algorithms for credit scoring. To this end two deep learning architectures are constructed, namely a multilayer perceptron network and a deep belief network, and their performance compared to that of two conventional methods and two ensemble methods for credit scoring. The models are then evaluated using a range of credit scoring data sets and performance measures. Furthermore, Bayesian statistical testing procedures are introduced in the context of credit scoring and compared to frequentist non-parametric testing procedures which have traditionally been considered best practice in credit scoring. This comparison will highlight the benefits of Bayesian statistical procedures and secure empirical findings. Two main conclusions emerge from comparing the different classification algorithms for credit scoring. Firstly, the ensemble method, XGBoost, is the best performing method for credit scoring of all the methods considered here. Secondly, deep neural networks do not outperform their shallower counterparts and are considerably more computationally expensive to construct. Therefore, deep learning algorithms do not seem to be appropriate models for credit scoring based on this comparison and XGBoost should be preferred over the other credit scoring methods considered here when classification performance is the main objective of credit scoring activities.

Suggested Citation

  • Gunnarsson, Björn Rafn & vanden Broucke, Seppe & Baesens, Bart & Óskarsdóttir, María & Lemahieu, Wilfried, 2021. "Deep learning for credit scoring: Do or don’t?," European Journal of Operational Research, Elsevier, vol. 295(1), pages 292-305.
  • Handle: RePEc:eee:ejores:v:295:y:2021:i:1:p:292-305
    DOI: 10.1016/j.ejor.2021.03.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722172100196X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.03.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Cuiqing & Wang, Zhao & Zhao, Huimin, 2019. "A prediction-driven mixture cure model and its application in credit scoring," European Journal of Operational Research, Elsevier, vol. 277(1), pages 20-31.
    2. Verbraken, Thomas & Bravo, Cristián & Weber, Richard & Baesens, Bart, 2014. "Development and application of consumer credit scoring models using profit-based classification measures," European Journal of Operational Research, Elsevier, vol. 238(2), pages 505-513.
    3. Dominique Guegan & Peter Martey Addo & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01835164, HAL.
    4. B Baesens & T Van Gestel & S Viaene & M Stepanova & J Suykens & J Vanthienen, 2003. "Benchmarking state-of-the-art classification algorithms for credit scoring," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(6), pages 627-635, June.
    5. Zhang, Zhiwang & Gao, Guangxia & Shi, Yong, 2014. "Credit risk evaluation using multi-criteria optimization classifier with kernel, fuzzification and penalty factors," European Journal of Operational Research, Elsevier, vol. 237(1), pages 335-348.
    6. Dominique Guegan, 2018. "Credit Risk Analysis Using machine and Deep Learning Models," Post-Print halshs-01889154, HAL.
    7. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis using Machine and Deep learning models," Working Papers 2018:08, Department of Economics, University of Venice "Ca' Foscari".
    8. Shigeyuki Hamori & Minami Kawai & Takahiro Kume & Yuji Murakami & Chikara Watanabe, 2018. "Ensemble Learning or Deep Learning? Application to Default Risk Analysis," JRFM, MDPI, vol. 11(1), pages 1-14, March.
    9. Regina Nuzzo, 2014. "Scientific method: Statistical errors," Nature, Nature, vol. 506(7487), pages 150-152, February.
    10. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis using Machine and Deep Learning models," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01719983, HAL.
    11. Kraus, Mathias & Feuerriegel, Stefan & Oztekin, Asil, 2020. "Deep learning in business analytics and operations research: Models, applications and managerial implications," European Journal of Operational Research, Elsevier, vol. 281(3), pages 628-641.
    12. Dominique Guegan & Peter Martey Addo & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Post-Print halshs-01835164, HAL.
    13. Dominique Guegan, 2018. "Credit Risk Analysis Using machine and Deep Learning Models," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01889154, HAL.
    14. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis using Machine and Deep Learning models," Post-Print halshs-01719983, HAL.
    15. Akkoç, Soner, 2012. "An empirical comparison of conventional techniques, neural networks and the three stage hybrid Adaptive Neuro Fuzzy Inference System (ANFIS) model for credit scoring analysis: The case of Turkish cred," European Journal of Operational Research, Elsevier, vol. 222(1), pages 168-178.
    16. Peter Martey Addo & Dominique Guégan & Bertrand Hassani, 2018. "Credit Risk Analysis using Machine and Deep learning models," Documents de travail du Centre d'Economie de la Sorbonne 18003, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    17. Ting Sun & Miklos A. Vasarhelyi, 2018. "Predicting credit card delinquencies: An application of deep neural networks," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 25(4), pages 174-189, October.
    18. David Durand, 1941. "Risk Elements in Consumer Instalment Financing," NBER Books, National Bureau of Economic Research, Inc, number dura41-1.
    19. Lessmann, Stefan & Baesens, Bart & Seow, Hsin-Vonn & Thomas, Lyn C., 2015. "Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research," European Journal of Operational Research, Elsevier, vol. 247(1), pages 124-136.
    20. David Durand, 1941. "Risk Elements in Consumer Instalment Financing, Technical Edition," NBER Books, National Bureau of Economic Research, Inc, number dura41-2.
    21. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Risks, MDPI, vol. 6(2), pages 1-20, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitrios Nikolaidis & Michalis Doumpos, 2022. "Credit Scoring with Drift Adaptation Using Local Regions of Competence," SN Operations Research Forum, Springer, vol. 3(4), pages 1-28, December.
    2. Chen, Shunqin & Guo, Zhengfeng & Zhao, Xinlei, 2021. "Predicting mortgage early delinquency with machine learning methods," European Journal of Operational Research, Elsevier, vol. 290(1), pages 358-372.
    3. Huei-Wen Teng & Michael Lee, 2019. "Estimation Procedures of Using Five Alternative Machine Learning Methods for Predicting Credit Card Default," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-27, September.
    4. Parisa Golbayani & Ionuc{t} Florescu & Rupak Chatterjee, 2020. "A comparative study of forecasting Corporate Credit Ratings using Neural Networks, Support Vector Machines, and Decision Trees," Papers 2007.06617, arXiv.org.
    5. Golbayani, Parisa & Florescu, Ionuţ & Chatterjee, Rupak, 2020. "A comparative study of forecasting corporate credit ratings using neural networks, support vector machines, and decision trees," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    6. Martin Leo & Suneel Sharma & K. Maddulety, 2019. "Machine Learning in Banking Risk Management: A Literature Review," Risks, MDPI, vol. 7(1), pages 1-22, March.
    7. Kim, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2020. "Can deep learning predict risky retail investors? A case study in financial risk behavior forecasting," European Journal of Operational Research, Elsevier, vol. 283(1), pages 217-234.
    8. Paritosh Navinchandra Jha & Marco Cucculelli, 2021. "A New Model Averaging Approach in Predicting Credit Risk Default," Risks, MDPI, vol. 9(6), pages 1-15, June.
    9. Nenad Milojević & Srdjan Redzepagic, 2021. "Prospects of Artificial Intelligence and Machine Learning Application in Banking Risk Management," Journal of Central Banking Theory and Practice, Central bank of Montenegro, vol. 10(3), pages 41-57.
    10. Kolesnikova, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2019. "Can Deep Learning Predict Risky Retail Investors? A Case Study in Financial Risk Behavior Forecasting," IRTG 1792 Discussion Papers 2019-023, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    11. Salima Smiti & Makram Soui, 2020. "Bankruptcy Prediction Using Deep Learning Approach Based on Borderline SMOTE," Information Systems Frontiers, Springer, vol. 22(5), pages 1067-1083, October.
    12. Lars Ole Hjelkrem & Petter Eilif de Lange, 2023. "Explaining Deep Learning Models for Credit Scoring with SHAP: A Case Study Using Open Banking Data," JRFM, MDPI, vol. 16(4), pages 1-19, April.
    13. Dan Wang & Zhi Chen & Ionut Florescu, 2021. "A Sparsity Algorithm with Applications to Corporate Credit Rating," Papers 2107.10306, arXiv.org.
    14. Roy Cerqueti & Francesca Pampurini & Annagiulia Pezzola & Anna Grazia Quaranta, 2022. "Dangerous liasons and hot customers for banks," Review of Quantitative Finance and Accounting, Springer, vol. 59(1), pages 65-89, July.
    15. Keerthana Sivamayil & Elakkiya Rajasekar & Belqasem Aljafari & Srete Nikolovski & Subramaniyaswamy Vairavasundaram & Indragandhi Vairavasundaram, 2023. "A Systematic Study on Reinforcement Learning Based Applications," Energies, MDPI, vol. 16(3), pages 1-23, February.
    16. Amirhosein Mosavi & Yaser Faghan & Pedram Ghamisi & Puhong Duan & Sina Faizollahzadeh Ardabili & Ely Salwana & Shahab S. Band, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Mathematics, MDPI, vol. 8(10), pages 1-42, September.
    17. Anastasios Petropoulos & Vasilis Siakoulis & Evaggelos Stavroulakis & Aristotelis Klamargias, 2019. "A robust machine learning approach for credit risk analysis of large loan level datasets using deep learning and extreme gradient boosting," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Are post-crisis statistical initiatives completed?, volume 49, Bank for International Settlements.
    18. Anastasios Petropoulos & Vasilis Siakoulis & Evaggelos Stavroulakis & Aristotelis Klamargias, 2019. "A robust machine learning approach for credit risk analysis of large loan-level datasets using deep learning and extreme gradient boosting," IFC Bulletins chapters, in: Bank for International Settlements (ed.), The use of big data analytics and artificial intelligence in central banking, volume 50, Bank for International Settlements.
    19. Irving Fisher Committee, 2019. "The use of big data analytics and artificial intelligence in central banking," IFC Bulletins, Bank for International Settlements, number 50.
    20. Yaseen Ghulam & Kamini Dhruva & Sana Naseem & Sophie Hill, 2018. "The Interaction of Borrower and Loan Characteristics in Predicting Risks of Subprime Automobile Loans," Risks, MDPI, vol. 6(3), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:295:y:2021:i:1:p:292-305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.