[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v237y2014i2p465-473.html
   My bibliography  Save this article

Two-level decomposition algorithm for crew rostering problems with fair working condition

Author

Listed:
  • Nishi, Tatsushi
  • Sugiyama, Taichi
  • Inuiguchi, Masahiro
Abstract
A typical railway crew scheduling problem consists of two phases: a crew pairing problem to determine a set of crew duties and a crew rostering problem. The crew rostering problem aims to find a set of rosters that forms workforce assignment of crew duties and rest periods satisfying several working regulations. In this paper, we present a two-level decomposition approach to solve railway crew rostering problem with the objective of fair working condition. To reduce computational efforts, the original problem is decomposed into the upper-level master problem and the lower-level subproblem. The subproblem can be further decomposed into several subproblems for each roster. These problems are iteratively solved by incorporating cuts into the master problem. We show that the relaxed problem of the master problem can be formulated as a uniform parallel machine scheduling problem to minimize makespan, which is NP-hard. An efficient branch-and-bound algorithm is applied to solve the master problem. Effective valid cuts are developed to reduce feasible search space to tighten the duality gap. Using data provided by the railway company, we demonstrate the effectiveness of the proposed method compared with that of constraint programming techniques for large-scale problems through computational experiments.

Suggested Citation

  • Nishi, Tatsushi & Sugiyama, Taichi & Inuiguchi, Masahiro, 2014. "Two-level decomposition algorithm for crew rostering problems with fair working condition," European Journal of Operational Research, Elsevier, vol. 237(2), pages 465-473.
  • Handle: RePEc:eee:ejores:v:237:y:2014:i:2:p:465-473
    DOI: 10.1016/j.ejor.2014.02.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714001258
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.02.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Souai, Nadia & Teghem, Jacques, 2009. "Genetic algorithm based approach for the integrated airline crew-pairing and rostering problem," European Journal of Operational Research, Elsevier, vol. 199(3), pages 674-683, December.
    2. Alberto Caprara & Paolo Toth & Daniele Vigo & Matteo Fischetti, 1998. "Modeling and Solving the Crew Rostering Problem," Operations Research, INFORMS, vol. 46(6), pages 820-830, December.
    3. Richard Freling & Ramon Lentink & Albert Wagelmans, 2004. "A Decision Support System for Crew Planning in Passenger Transportation Using a Flexible Branch-and-Price Algorithm," Annals of Operations Research, Springer, vol. 127(1), pages 203-222, March.
    4. Saddoune, Mohammed & Desaulniers, Guy & Elhallaoui, Issmail & Soumis, François, 2011. "Integrated airline crew scheduling: A bi-dynamic constraint aggregation method using neighborhoods," European Journal of Operational Research, Elsevier, vol. 212(3), pages 445-454, August.
    5. Bianco, Lucio & Bielli, Maurizio & Mingozzi, Aristide & Ricciardelli, Salvatore & Spadoni, Massimo, 1992. "A heuristic procedure for the crew rostering problem," European Journal of Operational Research, Elsevier, vol. 58(2), pages 272-283, April.
    6. Maenhout, Broos & Vanhoucke, Mario, 2010. "A hybrid scatter search heuristic for personalized crew rostering in the airline industry," European Journal of Operational Research, Elsevier, vol. 206(1), pages 155-167, October.
    7. ManMohan Sodhi & Stephen Norris, 2004. "A Flexible, Fast, and Optimal Modeling Approach Applied to Crew Rostering at London Underground," Annals of Operations Research, Springer, vol. 127(1), pages 259-281, March.
    8. Meinolf Sellmann & Kyriakos Zervoudakis & Panagiotis Stamatopoulos & Torsten Fahle, 2002. "Crew Assignment via Constraint Programming: Integrating Column Generation and Heuristic Tree Search," Annals of Operations Research, Springer, vol. 115(1), pages 207-225, September.
    9. Medard, Claude P. & Sawhney, Nidhi, 2007. "Airline crew scheduling from planning to operations," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1013-1027, December.
    10. J. N. Hooker, 2007. "Planning and Scheduling by Logic-Based Benders Decomposition," Operations Research, INFORMS, vol. 55(3), pages 588-602, June.
    11. Paola Cappanera & Giorgio Gallo, 2004. "A Multicommodity Flow Approach to the Crew Rostering Problem," Operations Research, INFORMS, vol. 52(4), pages 583-596, August.
    12. Lucic, Panta & Teodorovic, Dusan, 1999. "Simulated annealing for the multi-objective aircrew rostering problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(1), pages 19-45, January.
    13. Michel Gamache & François Soumis & Gérald Marquis & Jacques Desrosiers, 1999. "A Column Generation Approach for Large-Scale Aircrew Rostering Problems," Operations Research, INFORMS, vol. 47(2), pages 247-263, April.
    14. Zeghal, F.M. & Minoux, M., 2006. "Modeling and solving a Crew Assignment Problem in air transportation," European Journal of Operational Research, Elsevier, vol. 175(1), pages 187-209, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wolbeck, Lena Antonia, 2019. "Fairness aspects in personnel scheduling," Discussion Papers 2019/16, Free University Berlin, School of Business & Economics.
    2. Jorge Amaya & Paula Uribe, 2018. "A model and computational tool for crew scheduling in train transportation of mine materials by using a local search strategy," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 383-402, October.
    3. Breugem, T. & Dollevoet, T.A.B. & Huisman, D., 2017. "Is Equality always desirable?," Econometric Institute Research Papers EI2017-30, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    4. Doi, Tsubasa & Nishi, Tatsushi & Voß, Stefan, 2018. "Two-level decomposition-based matheuristic for airline crew rostering problems with fair working time," European Journal of Operational Research, Elsevier, vol. 267(2), pages 428-438.
    5. van Rossum, B.T.C. & Dollevoet, T. & Huisman, D., 2024. "Railway crew planning with fairness over time," European Journal of Operational Research, Elsevier, vol. 318(1), pages 55-70.
    6. Mesquita, Marta & Moz, Margarida & Paias, Ana & Pato, Margarida, 2015. "A decompose-and-fix heuristic based on multi-commodity flow models for driver rostering with days-off pattern," European Journal of Operational Research, Elsevier, vol. 245(2), pages 423-437.
    7. F. Zeynep Sargut & Caner Altuntaş & Dilek Cetin Tulazoğlu, 2017. "Multi-objective integrated acyclic crew rostering and vehicle assignment problem in public bus transportation," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1071-1096, October.
    8. Thomas Breugem & Twan Dollevoet & Dennis Huisman, 2022. "Is Equality Always Desirable? Analyzing the Trade-Off Between Fairness and Attractiveness in Crew Rostering," Management Science, INFORMS, vol. 68(4), pages 2619-2641, April.
    9. Julien Maheut & Jose P. Garcia-Sabater & Julio J. Garcia-Sabater & Sofia Garcia-Manglano, 2024. "Solving the multisite staff planning and scheduling problem in a sheltered employment centre that employs workers with intellectual disabilities by MILP: a Spanish case study," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 32(3), pages 569-591, September.
    10. Thomas Breugem & Luk N. Van Wassenhove, 2022. "The Price of Imposing Vertical Equity Through Asymmetric Outcome Constraints," Management Science, INFORMS, vol. 68(11), pages 7977-7993, November.
    11. Breugem, Thomas & Van Wassenhove, Luk N., 2022. "The price of imposing vertical equity through asymmetric outcome constraints," Other publications TiSEM b6e85652-c54a-4597-a32e-d, Tilburg University, School of Economics and Management.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Margarida Moz & Ana Respício & Margarida Vaz Pato, 2009. "Bi-objective evolutionary heuristics for bus driver rostering," Public Transport, Springer, vol. 1(3), pages 189-210, August.
    2. Atoosa Kasirzadeh & Mohammed Saddoune & François Soumis, 2017. "Airline crew scheduling: models, algorithms, and data sets," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(2), pages 111-137, June.
    3. Jesica Armas & Luis Cadarso & Angel A. Juan & Javier Faulin, 2017. "A multi-start randomized heuristic for real-life crew rostering problems in airlines with work-balancing goals," Annals of Operations Research, Springer, vol. 258(2), pages 825-848, November.
    4. Philippe Racette & Frédéric Quesnel & Andrea Lodi & François Soumis, 2024. "Gaining insight into crew rostering instances through ML-based sequential assignment," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(3), pages 537-578, October.
    5. Doi, Tsubasa & Nishi, Tatsushi & Voß, Stefan, 2018. "Two-level decomposition-based matheuristic for airline crew rostering problems with fair working time," European Journal of Operational Research, Elsevier, vol. 267(2), pages 428-438.
    6. Vahid Zeighami & François Soumis, 2019. "Combining Benders’ Decomposition and Column Generation for Integrated Crew Pairing and Personalized Crew Assignment Problems," Transportation Science, INFORMS, vol. 53(5), pages 1479-1499, September.
    7. F. Zeynep Sargut & Caner Altuntaş & Dilek Cetin Tulazoğlu, 2017. "Multi-objective integrated acyclic crew rostering and vehicle assignment problem in public bus transportation," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1071-1096, October.
    8. Maenhout, Broos & Vanhoucke, Mario, 2010. "A hybrid scatter search heuristic for personalized crew rostering in the airline industry," European Journal of Operational Research, Elsevier, vol. 206(1), pages 155-167, October.
    9. Quesnel, Frédéric & Desaulniers, Guy & Soumis, François, 2020. "A branch-and-price heuristic for the crew pairing problem with language constraints," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1040-1054.
    10. Panta Lučić & Dušan Teodorović, 2007. "Metaheuristics approach to the aircrew rostering problem," Annals of Operations Research, Springer, vol. 155(1), pages 311-338, November.
    11. Sebastian Ruther & Natashia Boland & Faramroze G. Engineer & Ian Evans, 2017. "Integrated Aircraft Routing, Crew Pairing, and Tail Assignment: Branch-and-Price with Many Pricing Problems," Transportation Science, INFORMS, vol. 51(1), pages 177-195, February.
    12. Breugem, T. & Dollevoet, T.A.B. & Huisman, D., 2017. "Is Equality always desirable?," Econometric Institute Research Papers EI2017-30, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    13. Mohamed Haouari & Farah Zeghal Mansour & Hanif D. Sherali, 2019. "A New Compact Formulation for the Daily Crew Pairing Problem," Transportation Science, INFORMS, vol. 53(3), pages 811-828, May.
    14. Salazar-González, Juan-José, 2014. "Approaches to solve the fleet-assignment, aircraft-routing, crew-pairing and crew-rostering problems of a regional carrier," Omega, Elsevier, vol. 43(C), pages 71-82.
    15. Thomas Breugem & Twan Dollevoet & Dennis Huisman, 2022. "Is Equality Always Desirable? Analyzing the Trade-Off Between Fairness and Attractiveness in Crew Rostering," Management Science, INFORMS, vol. 68(4), pages 2619-2641, April.
    16. Van den Bergh, Jorne & Beliën, Jeroen & De Bruecker, Philippe & Demeulemeester, Erik & De Boeck, Liesje, 2013. "Personnel scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 226(3), pages 367-385.
    17. Ernst, A. T. & Jiang, H. & Krishnamoorthy, M. & Sier, D., 2004. "Staff scheduling and rostering: A review of applications, methods and models," European Journal of Operational Research, Elsevier, vol. 153(1), pages 3-27, February.
    18. Jütte, Silke & Thonemann, Ulrich W., 2012. "Divide-and-price: A decomposition algorithm for solving large railway crew scheduling problems," European Journal of Operational Research, Elsevier, vol. 219(2), pages 214-223.
    19. Silke Jütte & Marc Albers & Ulrich W. Thonemann & Knut Haase, 2011. "Optimizing Railway Crew Scheduling at DB Schenker," Interfaces, INFORMS, vol. 41(2), pages 109-122, April.
    20. Ahmet Herekoğlu & Özgür Kabak, 2024. "Crew recovery optimization with deep learning and column generation for sustainable airline operation management," Annals of Operations Research, Springer, vol. 342(1), pages 399-427, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:237:y:2014:i:2:p:465-473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.