[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v236y2014i2p461-472.html
   My bibliography  Save this article

The nuclear medicine production and delivery problem

Author

Listed:
  • Lee, Jongsung
  • Kim, Byung-In
  • Johnson, Andrew L.
  • Lee, Kiho
Abstract
Half-life is a unique characteristic of radioactive substances used in a variety of medical treatments. Radioisotope F-18 used for diagnosing and monitoring many types of cancers has a half-life of 110minutes. As such, it requires careful coordination of production and delivery by manufacturers and medical end-users. To model this critical production and delivery problem, we develop a mixed integer program and propose a variant of a large neighborhood search algorithm with various improvement algorithms. We conduct several computational experiments to demonstrate the effectiveness of the proposed approach. The method when applied in a case study shows that improvement in terms of both time and cost is possible in the production and delivery of F-18.

Suggested Citation

  • Lee, Jongsung & Kim, Byung-In & Johnson, Andrew L. & Lee, Kiho, 2014. "The nuclear medicine production and delivery problem," European Journal of Operational Research, Elsevier, vol. 236(2), pages 461-472.
  • Handle: RePEc:eee:ejores:v:236:y:2014:i:2:p:461-472
    DOI: 10.1016/j.ejor.2013.12.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221713010084
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.12.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Pisinger & Stefan Ropke, 2010. "Large Neighborhood Search," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, chapter 0, pages 399-419, Springer.
    2. Dumas, Yvan & Desrosiers, Jacques & Soumis, Francois, 1991. "The pickup and delivery problem with time windows," European Journal of Operational Research, Elsevier, vol. 54(1), pages 7-22, September.
    3. Niklas Kohl & Oli B. G. Madsen, 1997. "An Optimization Algorithm for the Vehicle Routing Problem with Time Windows Based on Lagrangian Relaxation," Operations Research, INFORMS, vol. 45(3), pages 395-406, June.
    4. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    5. Kim, Byung-In & Kim, Seongbae & Park, Junhyuk, 2012. "A school bus scheduling problem," European Journal of Operational Research, Elsevier, vol. 218(2), pages 577-585.
    6. Guy Desaulniers, 2010. "Branch-and-Price-and-Cut for the Split-Delivery Vehicle Routing Problem with Time Windows," Operations Research, INFORMS, vol. 58(1), pages 179-192, February.
    7. Van Buer, Michael G. & Woodruff, David L. & Olson, Rick T., 1999. "Solving the medium newspaper production/distribution problem," European Journal of Operational Research, Elsevier, vol. 115(2), pages 237-253, June.
    8. Mantel, R. J. & Fontein, M., 1993. "A practical solution to a newspaper distribution problem," International Journal of Production Economics, Elsevier, vol. 30(1), pages 591-599, July.
    9. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    10. G. Clarke & J. W. Wright, 1964. "Scheduling of Vehicles from a Central Depot to a Number of Delivery Points," Operations Research, INFORMS, vol. 12(4), pages 568-581, August.
    11. Li, Chung-Lun & Vairaktarakis, George & Lee, Chung-Yee, 2005. "Machine scheduling with deliveries to multiple customer locations," European Journal of Operational Research, Elsevier, vol. 164(1), pages 39-51, July.
    12. Stefan Irnich & Daniel Villeneuve, 2006. "The Shortest-Path Problem with Resource Constraints and k -Cycle Elimination for k (ge) 3," INFORMS Journal on Computing, INFORMS, vol. 18(3), pages 391-406, August.
    13. Zhi-Long Chen, 2010. "Integrated Production and Outbound Distribution Scheduling: Review and Extensions," Operations Research, INFORMS, vol. 58(1), pages 130-148, February.
    14. Chandra, Pankaj & Fisher, Marshall L., 1994. "Coordination of production and distribution planning," European Journal of Operational Research, Elsevier, vol. 72(3), pages 503-517, February.
    15. Averbakh, Igor, 2010. "On-line integrated production-distribution scheduling problems with capacitated deliveries," European Journal of Operational Research, Elsevier, vol. 200(2), pages 377-384, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Devapriya, Priyantha & Ferrell, William & Geismar, Neil, 2017. "Integrated production and distribution scheduling with a perishable product," European Journal of Operational Research, Elsevier, vol. 259(3), pages 906-916.
    2. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2018. "Vehicle routing problems with multiple trips," Annals of Operations Research, Springer, vol. 271(1), pages 127-159, December.
    3. Ling Liu & Wenli Li & Kunpeng Li & Xuxia Zou, 2020. "A coordinated production and transportation scheduling problem with minimum sum of order delivery times," Journal of Heuristics, Springer, vol. 26(1), pages 33-58, February.
    4. Chen, Wanying (Amanda) & De Koster, René B.M. & Gong, Yeming, 2021. "Performance evaluation of automated medicine delivery systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    5. Alexis Robbes & Yannick Kergosien & Virginie André & Jean-Charles Billaut, 2022. "Efficient heuristics to minimize the total tardiness of chemotherapy drug production and delivery," Flexible Services and Manufacturing Journal, Springer, vol. 34(3), pages 785-820, September.
    6. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2016. "Vehicle routing problems with multiple trips," 4OR, Springer, vol. 14(3), pages 223-259, September.
    7. Chevroton, Hugo & Kergosien, Yannick & Berghman, Lotte & Billaut, Jean-Charles, 2021. "Solving an integrated scheduling and routing problem with inventory, routing and penalty costs," European Journal of Operational Research, Elsevier, vol. 294(2), pages 571-589.
    8. Arda, Yasemin & Cattaruzza, Diego & François, Véronique & Ogier, Maxime, 2024. "Home chemotherapy delivery: An integrated production scheduling and multi-trip vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 317(2), pages 468-486.
    9. Véronique François & Yasemin Arda & Yves Crama, 2019. "Adaptive Large Neighborhood Search for Multitrip Vehicle Routing with Time Windows," Transportation Science, INFORMS, vol. 53(6), pages 1706-1730, November.
    10. Ling Liu & Sen Liu, 2020. "Integrated Production and Distribution Problem of Perishable Products with a Minimum Total Order Weighted Delivery Time," Mathematics, MDPI, vol. 8(2), pages 1-18, January.
    11. Kergosien, Y. & Gendreau, M. & Billaut, J.-C., 2017. "A Benders decomposition-based heuristic for a production and outbound distribution scheduling problem with strict delivery constraints," European Journal of Operational Research, Elsevier, vol. 262(1), pages 287-298.
    12. Yang, Weibo & Ke, Liangjun & Wang, David Z.W. & Lam, Jasmine Siu Lee, 2021. "A branch-price-and-cut algorithm for the vehicle routing problem with release and due dates," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    13. Berghman, Lotte & Kergosien, Yannick & Billaut, Jean-Charles, 2023. "A review on integrated scheduling and outbound vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 311(1), pages 1-23.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2018. "Vehicle routing problems with multiple trips," Annals of Operations Research, Springer, vol. 271(1), pages 127-159, December.
    2. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2016. "Vehicle routing problems with multiple trips," 4OR, Springer, vol. 14(3), pages 223-259, September.
    3. Wang, Zheng, 2018. "Delivering meals for multiple suppliers: Exclusive or sharing logistics service," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 496-512.
    4. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    5. Sepehr Nemati & Oleg V. Shylo & Oleg A. Prokopyev & Andrew J. Schaefer, 2016. "The Surgical Patient Routing Problem: A Central Planner Approach," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 657-673, November.
    6. Ling Liu & Wenli Li & Kunpeng Li & Xuxia Zou, 2020. "A coordinated production and transportation scheduling problem with minimum sum of order delivery times," Journal of Heuristics, Springer, vol. 26(1), pages 33-58, February.
    7. Christian Viergutz & Sigrid Knust, 2014. "Integrated production and distribution scheduling with lifespan constraints," Annals of Operations Research, Springer, vol. 213(1), pages 293-318, February.
    8. Arpan Rijal & Marco Bijvank & Asvin Goel & René de Koster, 2021. "Workforce Scheduling with Order-Picking Assignments in Distribution Facilities," Transportation Science, INFORMS, vol. 55(3), pages 725-746, May.
    9. Chiang, Wen-Chyuan & Russell, Robert & Xu, Xiaojing & Zepeda, David, 2009. "A simulation/metaheuristic approach to newspaper production and distribution supply chain problems," International Journal of Production Economics, Elsevier, vol. 121(2), pages 752-767, October.
    10. Henriette Koch & Andreas Bortfeldt & Gerhard Wäscher, 2018. "A hybrid algorithm for the vehicle routing problem with backhauls, time windows and three-dimensional loading constraints," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(4), pages 1029-1075, October.
    11. Hiermann, Gerhard & Puchinger, Jakob & Ropke, Stefan & Hartl, Richard F., 2016. "The Electric Fleet Size and Mix Vehicle Routing Problem with Time Windows and Recharging Stations," European Journal of Operational Research, Elsevier, vol. 252(3), pages 995-1018.
    12. Stefan Ropke & Jean-François Cordeau, 2009. "Branch and Cut and Price for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 43(3), pages 267-286, August.
    13. Li, Jing-Quan & Mirchandani, Pitu B. & Borenstein, Denis, 2009. "Real-time vehicle rerouting problems with time windows," European Journal of Operational Research, Elsevier, vol. 194(3), pages 711-727, May.
    14. Ullrich, Christian A., 2013. "Integrated machine scheduling and vehicle routing with time windows," European Journal of Operational Research, Elsevier, vol. 227(1), pages 152-165.
    15. Müller, Juliane, 2010. "Approximative solutions to the bicriterion Vehicle Routing Problem with Time Windows," European Journal of Operational Research, Elsevier, vol. 202(1), pages 223-231, April.
    16. Amir Saeed Nikkhah Qamsari & Seyyed-Mahdi Hosseini-Motlagh & Seyed Farid Ghannadpour, 2022. "A column generation approach for an inventory routing problem with fuzzy time windows," Operational Research, Springer, vol. 22(2), pages 1157-1207, April.
    17. Daniela Guericke & Leena Suhl, 2017. "The home health care problem with working regulations," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 977-1010, October.
    18. Yao, Yu & Zhu, Xiaoning & Dong, Hongyu & Wu, Shengnan & Wu, Hailong & Carol Tong, Lu & Zhou, Xuesong, 2019. "ADMM-based problem decomposition scheme for vehicle routing problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 156-174.
    19. Daniel Schubert & André Scholz & Gerhard Wäscher, 2017. "Integrated Order Picking and Vehicle Routing with Due Dates," FEMM Working Papers 170007, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    20. Michael Drexl, 2018. "On the One-to-One Pickup-and-Delivery Problem with Time Windows and Trailers," Working Papers 1816, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:236:y:2014:i:2:p:461-472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.