[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v220y2012i1p270-285.html
   My bibliography  Save this article

A general variable neighborhood search for the one-commodity pickup-and-delivery travelling salesman problem

Author

Listed:
  • Mladenović, Nenad
  • Urošević, Dragan
  • Hanafi, Saı¨d
  • Ilić, Aleksandar
Abstract
We present a variable neighborhood search approach for solving the one-commodity pickup-and-delivery travelling salesman problem. It is characterized by a set of customers such that each of the customers either supplies (pickup customers) or demands (delivery customers) a given amount of a single product, and by a vehicle, whose given capacity must not be exceeded, that starts at the depot and must visit each customer only once. The objective is to minimize the total length of the tour. Thus, the considered problem includes checking the existence of a feasible travelling salesman’s tour and designing the optimal travelling salesman’s tour, which are both NP-hard problems. We adapt a collection of neighborhood structures, k-opt, double-bridge and insertion operators mainly used for solving the classical travelling salesman problem. A binary indexed tree data structure is used, which enables efficient feasibility checking and updating of solutions in these neighborhoods. Our extensive computational analysis shows that the proposed variable neighborhood search based heuristics outperforms the best-known algorithms in terms of both the solution quality and computational efforts. Moreover, we improve the best-known solutions of all benchmark instances from the literature (with 200 to 500 customers). We are also able to solve instances with up to 1000 customers.

Suggested Citation

  • Mladenović, Nenad & Urošević, Dragan & Hanafi, Saı¨d & Ilić, Aleksandar, 2012. "A general variable neighborhood search for the one-commodity pickup-and-delivery travelling salesman problem," European Journal of Operational Research, Elsevier, vol. 220(1), pages 270-285.
  • Handle: RePEc:eee:ejores:v:220:y:2012:i:1:p:270-285
    DOI: 10.1016/j.ejor.2012.01.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221712000719
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2012.01.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Laporte, Gilbert, 1992. "The traveling salesman problem: An overview of exact and approximate algorithms," European Journal of Operational Research, Elsevier, vol. 59(2), pages 231-247, June.
    2. Hansen, Pierre & Mladenovic, Nenad & Moreno Pérez, Jos´e A., 2008. "Variable neighborhood search," European Journal of Operational Research, Elsevier, vol. 191(3), pages 593-595, December.
    3. Mosheiov, Gur, 1994. "The Travelling Salesman Problem with pick-up and delivery," European Journal of Operational Research, Elsevier, vol. 79(2), pages 299-310, December.
    4. Rego, César & Gamboa, Dorabela & Glover, Fred & Osterman, Colin, 2011. "Traveling salesman problem heuristics: Leading methods, implementations and latest advances," European Journal of Operational Research, Elsevier, vol. 211(3), pages 427-441, June.
    5. Ilic, Aleksandar & Urosevic, Dragan & Brimberg, Jack & Mladenovic, Nenad, 2010. "A general variable neighborhood search for solving the uncapacitated single allocation p-hub median problem," European Journal of Operational Research, Elsevier, vol. 206(2), pages 289-300, October.
    6. S. Irnich, 2008. "A Unified Modeling and Solution Framework for Vehicle Routing and Local Search-Based Metaheuristics," INFORMS Journal on Computing, INFORMS, vol. 20(2), pages 270-287, May.
    7. M. W. P. Savelsbergh & M. Sol, 1995. "The General Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 29(1), pages 17-29, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Qingfeng & Li, Kunpeng & Liu, Zhixue, 2014. "Model and algorithm for an unpaired pickup and delivery vehicle routing problem with split loads," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 218-235.
    2. Tuğçe Uzun Kocamiş & Gülçin Yildirim, 2016. "Sustainability Reporting in Turkey: Analysis of Companies in the BIST Sustainability Index," European Journal of Economics and Business Studies Articles, Revistia Research and Publishing, vol. 2, ejes_v2_i.
    3. Ling Liu & Wenli Li & Kunpeng Li & Xuxia Zou, 2020. "A coordinated production and transportation scheduling problem with minimum sum of order delivery times," Journal of Heuristics, Springer, vol. 26(1), pages 33-58, February.
    4. Margaretha Gansterer & Murat Küçüktepe & Richard F. Hartl, 2017. "The multi-vehicle profitable pickup and delivery problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 303-319, January.
    5. Rey, David & Almi’ani, Khaled & Nair, Divya J., 2018. "Exact and heuristic algorithms for finding envy-free allocations in food rescue pickup and delivery logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 112(C), pages 19-46.
    6. Qiu, Xiaoqiu & Feuerriegel, Stefan & Neumann, Dirk, 2017. "Making the most of fleets: A profit-maximizing multi-vehicle pickup and delivery selection problem," European Journal of Operational Research, Elsevier, vol. 259(1), pages 155-168.
    7. Huber, Sandra & Geiger, Martin Josef, 2017. "Order matters – A Variable Neighborhood Search for the Swap-Body Vehicle Routing Problem," European Journal of Operational Research, Elsevier, vol. 263(2), pages 419-445.
    8. Hernández-Pérez, Hipólito & Rodríguez-Martín, Inmaculada & Salazar-González, Juan-José, 2016. "A hybrid heuristic approach for the multi-commodity pickup-and-delivery traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 251(1), pages 44-52.
    9. Masmoudi, Mohamed Amine & Hosny, Manar & Demir, Emrah & Genikomsakis, Konstantinos N. & Cheikhrouhou, Naoufel, 2018. "The dial-a-ride problem with electric vehicles and battery swapping stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 392-420.
    10. Dell’Amico, Mauro & Iori, Manuel & Novellani, Stefano & Subramanian, Anand, 2018. "The Bike sharing Rebalancing Problem with Stochastic Demands," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 362-380.
    11. Nair, D.J. & Grzybowska, H. & Fu, Y. & Dixit, V.V., 2018. "Scheduling and routing models for food rescue and delivery operations," Socio-Economic Planning Sciences, Elsevier, vol. 63(C), pages 18-32.
    12. Almoustafa, Samira & Hanafi, Said & Mladenović, Nenad, 2013. "New exact method for large asymmetric distance-constrained vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 226(3), pages 386-394.
    13. Baoyu Liao & Qingru Song & Jun Pei & Shanlin Yang & Panos M. Pardalos, 2020. "Parallel-machine group scheduling with inclusive processing set restrictions, outsourcing option and serial-batching under the effect of step-deterioration," Journal of Global Optimization, Springer, vol. 78(4), pages 717-742, December.
    14. Divya J. Nair & David Rey & Vinayak V. Dixit, 2017. "Fair allocation and cost-effective routing models for food rescue and redistribution," IISE Transactions, Taylor & Francis Journals, vol. 49(12), pages 1172-1188, December.
    15. Venkatesh Pandiri & Alok Singh, 2020. "Two multi-start heuristics for the k-traveling salesman problem," OPSEARCH, Springer;Operational Research Society of India, vol. 57(4), pages 1164-1204, December.
    16. Juan D. Palacio & Juan Carlos Rivera, 2022. "A multi-start evolutionary local search for the one-commodity pickup and delivery traveling salesman problem," Annals of Operations Research, Springer, vol. 316(2), pages 979-1011, September.
    17. Dell'Amico, Mauro & Hadjicostantinou, Eleni & Iori, Manuel & Novellani, Stefano, 2014. "The bike sharing rebalancing problem: Mathematical formulations and benchmark instances," Omega, Elsevier, vol. 45(C), pages 7-19.
    18. Bruno P. Bruck & Fábio Cruz & Manuel Iori & Anand Subramanian, 2019. "The Static Bike Sharing Rebalancing Problem with Forbidden Temporary Operations," Transportation Science, INFORMS, vol. 53(3), pages 882-896, May.
    19. Todosijević, Raca & Benmansour, Rachid & Hanafi, Saïd & Mladenović, Nenad & Artiba, Abdelhakim, 2016. "Nested general variable neighborhood search for the periodic maintenance problem," European Journal of Operational Research, Elsevier, vol. 252(2), pages 385-396.
    20. Xiao, Yiyong & Zhang, Renqian & Zhao, Qiuhong & Kaku, Ikou & Xu, Yuchun, 2014. "A variable neighborhood search with an effective local search for uncapacitated multilevel lot-sizing problems," European Journal of Operational Research, Elsevier, vol. 235(1), pages 102-114.
    21. Hernández-Pérez, Hipólito & Salazar-González, Juan-José, 2022. "A Branch-and-cut algorithm for the split-demand one-commodity pickup-and-delivery travelling salesman problem," European Journal of Operational Research, Elsevier, vol. 297(2), pages 467-483.
    22. Lei, Chao & Ouyang, Yanfeng, 2018. "Continuous approximation for demand balancing in solving large-scale one-commodity pickup and delivery problems," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 90-109.
    23. Xiao, Yiyong & Konak, Abdullah, 2016. "The heterogeneous green vehicle routing and scheduling problem with time-varying traffic congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 88(C), pages 146-166.
    24. Xu, Dongyang & Li, Kunpeng & Zou, Xuxia & Liu, Ling, 2017. "An unpaired pickup and delivery vehicle routing problem with multi-visit," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 218-247.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olivera Janković & Stefan Mišković & Zorica Stanimirović & Raca Todosijević, 2017. "Novel formulations and VNS-based heuristics for single and multiple allocation p-hub maximal covering problems," Annals of Operations Research, Springer, vol. 259(1), pages 191-216, December.
    2. Hipólito Hernández-Pérez & Juan-José Salazar-González, 2004. "Heuristics for the One-Commodity Pickup-and-Delivery Traveling Salesman Problem," Transportation Science, INFORMS, vol. 38(2), pages 245-255, May.
    3. Margaretha Gansterer & Murat Küçüktepe & Richard F. Hartl, 2017. "The multi-vehicle profitable pickup and delivery problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 303-319, January.
    4. Heber F. Amaral & Sebastián Urrutia & Lars M. Hvattum, 2021. "Delayed improvement local search," Journal of Heuristics, Springer, vol. 27(5), pages 923-950, October.
    5. Burger, M. & Su, Z. & De Schutter, B., 2018. "A node current-based 2-index formulation for the fixed-destination multi-depot travelling salesman problem," European Journal of Operational Research, Elsevier, vol. 265(2), pages 463-477.
    6. Rais, A. & Alvelos, F. & Carvalho, M.S., 2014. "New mixed integer-programming model for the pickup-and-delivery problem with transshipment," European Journal of Operational Research, Elsevier, vol. 235(3), pages 530-539.
    7. Nagy, Gabor & Salhi, Said, 2005. "Heuristic algorithms for single and multiple depot vehicle routing problems with pickups and deliveries," European Journal of Operational Research, Elsevier, vol. 162(1), pages 126-141, April.
    8. Sam Thangiah & Adel Fergany & Salman Awan, 2007. "Real-time split-delivery pickup and delivery time window problems with transfers," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 15(4), pages 329-349, November.
    9. Xu, Liang & Xu, Zhou & Xu, Dongsheng, 2013. "Exact and approximation algorithms for the min–max k-traveling salesmen problem on a tree," European Journal of Operational Research, Elsevier, vol. 227(2), pages 284-292.
    10. Lu, Quan & Dessouky, Maged M., 2006. "A new insertion-based construction heuristic for solving the pickup and delivery problem with time windows," European Journal of Operational Research, Elsevier, vol. 175(2), pages 672-687, December.
    11. Almeder, Christian & Hartl, Richard F., 2013. "A metaheuristic optimization approach for a real-world stochastic flexible flow shop problem with limited buffer," International Journal of Production Economics, Elsevier, vol. 145(1), pages 88-95.
    12. Ursavas, Evrim & Zhu, Stuart X., 2016. "Optimal policies for the berth allocation problem under stochastic nature," European Journal of Operational Research, Elsevier, vol. 255(2), pages 380-387.
    13. Zhen, Lu & Lee, Loo Hay & Chew, Ek Peng, 2011. "A decision model for berth allocation under uncertainty," European Journal of Operational Research, Elsevier, vol. 212(1), pages 54-68, July.
    14. Gronalt, Manfred & Hartl, Richard F. & Reimann, Marc, 2003. "New savings based algorithms for time constrained pickup and delivery of full truckloads," European Journal of Operational Research, Elsevier, vol. 151(3), pages 520-535, December.
    15. Capelle, Thomas & Cortés, Cristián E. & Gendreau, Michel & Rey, Pablo A. & Rousseau, Louis-Martin, 2019. "A column generation approach for location-routing problems with pickup and delivery," European Journal of Operational Research, Elsevier, vol. 272(1), pages 121-131.
    16. Tang, Lixin & Liu, Jiyin & Rong, Aiying & Yang, Zihou, 2000. "A multiple traveling salesman problem model for hot rolling scheduling in Shanghai Baoshan Iron & Steel Complex," European Journal of Operational Research, Elsevier, vol. 124(2), pages 267-282, July.
    17. Castellano, Davide & Gallo, Mosè & Grassi, Andrea & Santillo, Liberatina C., 2019. "The effect of GHG emissions on production, inventory replenishment and routing decisions in a single vendor-multiple buyers supply chain," International Journal of Production Economics, Elsevier, vol. 218(C), pages 30-42.
    18. Mauro Napoletano & Stefano Battiston & Michael D König & Frank Schweitzer, 2008. "The efficiency and evolution of R&D Networks," Working Papers hal-01066189, HAL.
    19. Xiao, Yiyong & Kaku, Ikou & Zhao, Qiuhong & Zhang, Renqian, 2011. "A reduced variable neighborhood search algorithm for uncapacitated multilevel lot-sizing problems," European Journal of Operational Research, Elsevier, vol. 214(2), pages 223-231, October.
    20. Du, Zhibin, 2017. "Further results regarding the sum of domination number and average eccentricity," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 299-309.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:220:y:2012:i:1:p:270-285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.