[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v218y2012i3p587-601.html
   My bibliography  Save this article

Interior point methods 25 years later

Author

Listed:
  • Gondzio, Jacek
Abstract
Interior point methods for optimization have been around for more than 25 years now. Their presence has shaken up the field of optimization. Interior point methods for linear and (convex) quadratic programming display several features which make them particularly attractive for very large scale optimization. Among the most impressive of them are their low-degree polynomial worst-case complexity and an unrivalled ability to deliver optimal solutions in an almost constant number of iterations which depends very little, if at all, on the problem dimension. Interior point methods are competitive when dealing with small problems of dimensions below one million constraints and variables and are beyond competition when applied to large problems of dimensions going into millions of constraints and variables.

Suggested Citation

  • Gondzio, Jacek, 2012. "Interior point methods 25 years later," European Journal of Operational Research, Elsevier, vol. 218(3), pages 587-601.
  • Handle: RePEc:eee:ejores:v:218:y:2012:i:3:p:587-601
    DOI: 10.1016/j.ejor.2011.09.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221711008204
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2011.09.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gondzio, Jacek & Grothey, Andreas, 2007. "Solving non-linear portfolio optimization problems with the primal-dual interior point method," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1019-1029, September.
    2. J. Hall, 2010. "Towards a practical parallelisation of the simplex method," Computational Management Science, Springer, vol. 7(2), pages 139-170, April.
    3. John R. Birge & Liqun Qi, 1988. "Computing Block-Angular Karmarkar Projections with Applications to Stochastic Programming," Management Science, INFORMS, vol. 34(12), pages 1472-1479, December.
    4. James K. Hurd & Frederic H. Murphy, 1992. "Exploiting Special Structure in Primal Dual Interior Point Methods," INFORMS Journal on Computing, INFORMS, vol. 4(1), pages 38-44, February.
    5. Luca Bergamaschi & Jacek Gondzio & Manolo Venturin & Giovanni Zilli, 2007. "Inexact constraint preconditioners for linear systems arising in interior point methods," Computational Optimization and Applications, Springer, vol. 36(2), pages 137-147, April.
    6. Uwe H. Suhl & Leena M. Suhl, 1990. "Computing Sparse LU Factorizations for Large-Scale Linear Programming Bases," INFORMS Journal on Computing, INFORMS, vol. 2(4), pages 325-335, November.
    7. Andersen, E.D. & Gondzio, J. & Meszaros, C. & Xu, X., 1996. "Implementation of Interior Point Methods for Large Scale Linear Programming," Papers 96.3, Ecole des Hautes Etudes Commerciales, Universite de Geneve-.
    8. Roy Marsten & Radhika Subramanian & Matthew Saltzman & Irvin Lustig & David Shanno, 1990. "Interior Point Methods for Linear Programming: Just Call Newton, Lagrange, and Fiacco and McCormick!," Interfaces, INFORMS, vol. 20(4), pages 105-116, August.
    9. S. Bellavia, 1998. "Inexact Interior-Point Method," Journal of Optimization Theory and Applications, Springer, vol. 96(1), pages 109-121, January.
    10. Simon Gröblacher & Tomasz Paterek & Rainer Kaltenbaek & Časlav Brukner & Marek Żukowski & Markus Aspelmeyer & Anton Zeilinger, 2007. "An experimental test of non-local realism," Nature, Nature, vol. 446(7138), pages 871-875, April.
    11. NESTEROV, Yu., 2005. "Smooth minimization of non-smooth functions," LIDAM Reprints CORE 1819, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. G. Al-Jeiroudi & J. Gondzio, 2009. "Convergence Analysis of the Inexact Infeasible Interior-Point Method for Linear Optimization," Journal of Optimization Theory and Applications, Springer, vol. 141(2), pages 231-247, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacek Gondzio, 2012. "Matrix-free interior point method," Computational Optimization and Applications, Springer, vol. 51(2), pages 457-480, March.
    2. Jacek Gondzio & Andreas Grothey, 2009. "Exploiting structure in parallel implementation of interior point methods for optimization," Computational Management Science, Springer, vol. 6(2), pages 135-160, May.
    3. Stefania Bellavia & Valentina De Simone & Daniela di Serafino & Benedetta Morini, 2016. "On the update of constraint preconditioners for regularized KKT systems," Computational Optimization and Applications, Springer, vol. 65(2), pages 339-360, November.
    4. Benedetta Morini & Valeria Simoncini, 2017. "Stability and Accuracy of Inexact Interior Point Methods for Convex Quadratic Programming," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 450-477, November.
    5. Gondzio, Jacek, 2016. "Crash start of interior point methods," European Journal of Operational Research, Elsevier, vol. 255(1), pages 308-314.
    6. Mohammadhossein Mohammadisiahroudi & Ramin Fakhimi & Tamás Terlaky, 2024. "Efficient Use of Quantum Linear System Algorithms in Inexact Infeasible IPMs for Linear Optimization," Journal of Optimization Theory and Applications, Springer, vol. 202(1), pages 146-183, July.
    7. Paul Armand & Joël Benoist & Jean-Pierre Dussault, 2012. "Local path-following property of inexact interior methods in nonlinear programming," Computational Optimization and Applications, Springer, vol. 52(1), pages 209-238, May.
    8. Gondzio, J. & Sarkissian, R. & Vial, J.-P., 1997. "Using an interior point method for the master problem in a decomposition approach," European Journal of Operational Research, Elsevier, vol. 101(3), pages 577-587, September.
    9. Md Sarowar Morshed & Md Saiful Islam & Md. Noor-E-Alam, 2020. "Accelerated sampling Kaczmarz Motzkin algorithm for the linear feasibility problem," Journal of Global Optimization, Springer, vol. 77(2), pages 361-382, June.
    10. Maros, Istvan & Haroon Khaliq, Mohammad, 2002. "Advances in design and implementation of optimization software," European Journal of Operational Research, Elsevier, vol. 140(2), pages 322-337, July.
    11. G. Y. Zhao, 1999. "Interior-Point Methods with Decomposition for Solving Large-Scale Linear Programs," Journal of Optimization Theory and Applications, Springer, vol. 102(1), pages 169-192, July.
    12. Meszaros, Csaba, 1997. "The augmented system variant of IPMs in two-stage stochastic linear programming computation," European Journal of Operational Research, Elsevier, vol. 101(2), pages 317-327, September.
    13. Rehfeldt, Daniel & Hobbie, Hannes & Schönheit, David & Koch, Thorsten & Möst, Dominik & Gleixner, Ambros, 2022. "A massively parallel interior-point solver for LPs with generalized arrowhead structure, and applications to energy system models," European Journal of Operational Research, Elsevier, vol. 296(1), pages 60-71.
    14. Yiran Cui & Keiichi Morikuni & Takashi Tsuchiya & Ken Hayami, 2019. "Implementation of interior-point methods for LP based on Krylov subspace iterative solvers with inner-iteration preconditioning," Computational Optimization and Applications, Springer, vol. 74(1), pages 143-176, September.
    15. Luciana Casacio & Aurelio R. L. Oliveira & Christiano Lyra, 2018. "Using groups in the splitting preconditioner computation for interior point methods," 4OR, Springer, vol. 16(4), pages 401-410, December.
    16. Torres-Rojo, J. M., 2001. "Risk management in the design of a feeding ration: a portfolio theory approach," Agricultural Systems, Elsevier, vol. 68(1), pages 1-20, April.
    17. Stojkovic, Nebojsa V. & Stanimirovic, Predrag S., 2001. "Two direct methods in linear programming," European Journal of Operational Research, Elsevier, vol. 131(2), pages 417-439, June.
    18. Masaru Ito, 2016. "New results on subgradient methods for strongly convex optimization problems with a unified analysis," Computational Optimization and Applications, Springer, vol. 65(1), pages 127-172, September.
    19. TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Discussion Papers CORE 2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    20. Dimitris Bertsimas & Nishanth Mundru, 2021. "Sparse Convex Regression," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 262-279, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:218:y:2012:i:3:p:587-601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.