[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/eejocm/v32y2019ic4.html
   My bibliography  Save this article

Apollo: A flexible, powerful and customisable freeware package for choice model estimation and application

Author

Listed:
  • Hess, Stephane
  • Palma, David
Abstract
The community of choice modellers has expanded substantially over recent years, covering many disciplines and encompassing users with very different levels of econometric and computational skills. This paper presents an introduction to Apollo, a powerful new freeware package for R that aims to provide a comprehensive set of modelling tools for both new and experienced users. Apollo also incorporates numerous post-estimation tools, allows for both classical and Bayesian estimation, and permits advanced users to develop their own routines for new model structures.

Suggested Citation

  • Hess, Stephane & Palma, David, 2019. "Apollo: A flexible, powerful and customisable freeware package for choice model estimation and application," Journal of choice modelling, Elsevier, vol. 32(C), pages 1-1.
  • Handle: RePEc:eee:eejocm:v:32:y:2019:i:c:4
    DOI: 10.1016/j.jocm.2019.100170
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1755534519300703
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jocm.2019.100170?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lancsar, Emily & Louviere, Jordan & Donaldson, Cam & Currie, Gillian & Burgess, Leonie, 2013. "Best worst discrete choice experiments in health: Methods and an application," Social Science & Medicine, Elsevier, vol. 76(C), pages 74-82.
    2. Koppelman, Frank S. & Wen, Chieh-Hua, 1998. "Alternative nested logit models: structure, properties and estimation," Transportation Research Part B: Methodological, Elsevier, vol. 32(5), pages 289-298, June.
    3. Fosgerau, Mogens & Mabit, Stefan L., 2013. "Easy and flexible mixture distributions," Economics Letters, Elsevier, vol. 120(2), pages 206-210.
    4. Kløjgaard, Mirja Elisabeth & Hess, Stephane, 2014. "Understanding the formation and influence of attitudes in patients' treatment choices for lower back pain: Testing the benefits of a hybrid choice model approach," Social Science & Medicine, Elsevier, vol. 114(C), pages 138-150.
    5. Maya Abou-Zeid & Moshe Ben-Akiva, 2014. "Hybrid choice models," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 17, pages 383-412, Edward Elgar Publishing.
    6. Daly, Andrew & Hess, Stephane & de Jong, Gerard, 2012. "Calculating errors for measures derived from choice modelling estimates," Transportation Research Part B: Methodological, Elsevier, vol. 46(2), pages 333-341.
    7. Vij, Akshay & Walker, Joan L., 2016. "How, when and why integrated choice and latent variable models are latently useful," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 192-217.
    8. Pinjari, Abdul Rawoof & Bhat, Chandra, 2010. "A multiple discrete-continuous nested extreme value (MDCNEV) model: Formulation and application to non-worker activity time-use and timing behavior on weekdays," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 562-583, May.
    9. Eddelbuettel, Dirk & Francois, Romain, 2011. "Rcpp: Seamless R and C++ Integration," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i08).
    10. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555.
    11. Busemeyer, Jerome R. & Townsend, James T., 1992. "Fundamental derivations from decision field theory," Mathematical Social Sciences, Elsevier, vol. 23(3), pages 255-282, June.
    12. William H. Greene & David A. Hensher, 2013. "Revealing additional dimensions of preference heterogeneity in a latent class mixed multinomial logit model," Applied Economics, Taylor & Francis Journals, vol. 45(14), pages 1897-1902, May.
    13. Stephane Hess, 2014. "Latent class structures: taste heterogeneity and beyond," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 14, pages 311-330, Edward Elgar Publishing.
    14. Wen, Chieh-Hua & Koppelman, Frank S., 2001. "The generalized nested logit model," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 627-641, August.
    15. Hess, Stephane & Train, Kenneth E. & Polak, John W., 2006. "On the use of a Modified Latin Hypercube Sampling (MLHS) method in the estimation of a Mixed Logit Model for vehicle choice," Transportation Research Part B: Methodological, Elsevier, vol. 40(2), pages 147-163, February.
    16. Arne Henningsen & Ott Toomet, 2011. "maxLik: A package for maximum likelihood estimation in R," Computational Statistics, Springer, vol. 26(3), pages 443-458, September.
    17. Maria Kamargianni & Moshe Ben-Akiva & Amalia Polydoropoulou, 2014. "Incorporating social interaction into hybrid choice models," Transportation, Springer, vol. 41(6), pages 1263-1285, November.
    18. Bhat, Chandra R., 2008. "The multiple discrete-continuous extreme value (MDCEV) model: Role of utility function parameters, identification considerations, and model extensions," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 274-303, March.
    19. Daly, Andrew, 1987. "Estimating "tree" logit models," Transportation Research Part B: Methodological, Elsevier, vol. 21(4), pages 251-267, August.
    20. Hess, Stephane & Train, Kenneth E., 2011. "Recovery of inter- and intra-personal heterogeneity using mixed logit models," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 973-990, August.
    21. Krinsky, Itzhak & Robb, A Leslie, 1986. "On Approximating the Statistical Properties of Elasticities," The Review of Economics and Statistics, MIT Press, vol. 68(4), pages 715-719, November.
    22. M. Bierlaire & M. Thémans & N. Zufferey, 2010. "A Heuristic for Nonlinear Global Optimization," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 59-70, February.
    23. Andrew Daly & Stephane Hess & Bhanu Patruni & Dimitris Potoglou & Charlene Rohr, 2012. "Using ordered attitudinal indicators in a latent variable choice model: a study of the impact of security on rail travel behaviour," Transportation, Springer, vol. 39(2), pages 267-297, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tinessa, Fiore & Marzano, Vittorio & Papola, Andrea, 2020. "Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 1-23.
    2. Schmid, Basil & Axhausen, Kay W., 2019. "In-store or online shopping of search and experience goods: A hybrid choice approach," Journal of choice modelling, Elsevier, vol. 31(C), pages 156-180.
    3. Hancock, Thomas O. & Hess, Stephane & Marley, A.A.J. & Choudhury, Charisma F., 2021. "An accumulation of preference: Two alternative dynamic models for understanding transport choices," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 250-282.
    4. John Buckell & David A Hensher & Stephane Hess, 2021. "Kicking the habit is hard: A hybrid choice model investigation into the role of addiction in smoking behavior," Health Economics, John Wiley & Sons, Ltd., vol. 30(1), pages 3-19, January.
    5. Enam, Annesha & Konduri, Karthik C. & Pinjari, Abdul R. & Eluru, Naveen, 2018. "An integrated choice and latent variable model for multiple discrete continuous choice kernels: Application exploring the association between day level moods and discretionary activity engagement choi," Journal of choice modelling, Elsevier, vol. 26(C), pages 80-100.
    6. Lehmann, Nico & Sloot, Daniel & Ardone, Armin & Fichtner, Wolf, 2022. "Willingness to pay for regional electricity generation – A question of green values and regional product beliefs?," Energy Economics, Elsevier, vol. 110(C).
    7. Vij, Akshay & Walker, Joan L., 2016. "How, when and why integrated choice and latent variable models are latently useful," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 192-217.
    8. Ouvrard, Benjamin & Abildtrup, Jens & Stenger, Anne, 2020. "Nudging Acceptability for Wood Ash Recycling in Forests: A Choice Experiment," Ecological Economics, Elsevier, vol. 177(C).
    9. Carson, Richard T. & Czajkowski, Mikołaj, 2019. "A new baseline model for estimating willingness to pay from discrete choice models," Journal of Environmental Economics and Management, Elsevier, vol. 95(C), pages 57-61.
    10. Isler, Cassiano Augusto & Blumenfeld, Marcelo & Caldeira, Gabriel Pereira & Roberts, Clive, 2024. "Long-Distance railway mode choice in Brazil: Evidence from a discrete choice experiment," Research in Transportation Economics, Elsevier, vol. 104(C).
    11. Schmid, Basil & Becker, Felix & Axhausen, Kay W. & Widmer, Paul & Stein, Petra, 2023. "A simultaneous model of residential location, mobility tool ownership and mode choice using latent variables," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    12. Hess, Stephane & Spitz, Greg & Bradley, Mark & Coogan, Matt, 2018. "Analysis of mode choice for intercity travel: Application of a hybrid choice model to two distinct US corridors," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 547-567.
    13. Dea van Lierop & Francisco J. Bahamonde-Birke, 2023. "Commuting to the future: Assessing the relationship between individuals’ usage of information and communications technology, personal attitudes, characteristics and mode choice," Networks and Spatial Economics, Springer, vol. 23(2), pages 353-371, June.
    14. Guevara, C. Angelo & Figueroa, Esteban & Munizaga, Marcela A., 2021. "Paving the road for electric vehicles: Lessons from a randomized experiment in an introduction stage market," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 326-340.
    15. Luis Márquez & Víctor Cantillo & Julián Arellana, 2020. "Assessing the influence of indicators’ complexity on hybrid discrete choice model estimates," Transportation, Springer, vol. 47(1), pages 373-396, February.
    16. Wiktor Budziński & Mikołaj Czajkowski, 2022. "Endogeneity and Measurement Bias of the Indicator Variables in Hybrid Choice Models: A Monte Carlo Investigation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(3), pages 605-629, November.
    17. Jia, Wenjian & Chen, T. Donna, 2023. "Investigating heterogeneous preferences for plug-in electric vehicles: Policy implications from different choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    18. Zhang, Hanyuan & Qiu, Richard T.R. & Wen, Long & Song, Haiyan & Liu, Chang, 2023. "Has COVID-19 changed tourist destination choice?," Annals of Tourism Research, Elsevier, vol. 103(C).
    19. Sfeir, Georges & Abou-Zeid, Maya & Rodrigues, Filipe & Pereira, Francisco Camara & Kaysi, Isam, 2021. "Latent class choice model with a flexible class membership component: A mixture model approach," Journal of choice modelling, Elsevier, vol. 41(C).
    20. Hancock, Thomas O. & Broekaert, Jan & Hess, Stephane & Choudhury, Charisma F., 2020. "Quantum probability: A new method for modelling travel behaviour," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 165-198.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eejocm:v:32:y:2019:i:c:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-choice-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.