[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v167y2012i2p305-316.html
   My bibliography  Save this article

n-uniformly consistent density estimation in nonparametric regression models

Author

Listed:
  • Escanciano, Juan Carlos
  • Jacho-Chávez, David T.
Abstract
The paper introduces a n-consistent estimator of the probability density function of the response variable in a nonparametric regression model. The proposed estimator is shown to have a (uniform) asymptotic normal distribution, and it is computationally very simple to calculate. A Monte Carlo experiment confirms our theoretical results. The results derived in the paper adapt general U-processes theory to the inclusion of infinite dimensional nuisance parameters.

Suggested Citation

  • Escanciano, Juan Carlos & Jacho-Chávez, David T., 2012. "n-uniformly consistent density estimation in nonparametric regression models," Journal of Econometrics, Elsevier, vol. 167(2), pages 305-316.
  • Handle: RePEc:eee:econom:v:167:y:2012:i:2:p:305-316
    DOI: 10.1016/j.jeconom.2011.09.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407611001989
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2011.09.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Neumeyer, N. & Van Keilegom, I., 2010. "Estimating the error distribution in nonparametric multiple regression with applications to model testing," LIDAM Reprints ISBA 2010006, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Einmahl, John H.J. & Van Keilegom, Ingrid, 2008. "Specification tests in nonparametric regression," Journal of Econometrics, Elsevier, vol. 143(1), pages 88-102, March.
    3. Arthur Lewbel, 1998. "Semiparametric Latent Variable Model Estimation with Endogenous or Mismeasured Regressors," Econometrica, Econometric Society, vol. 66(1), pages 105-122, January.
    4. Anton Schick & Wolfgang Wefelmeyer, 2002. "Estimating the Innovation Distribution in Nonlinear Autoregressive Models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(2), pages 245-260, June.
    5. Xiaohong Chen & Oliver Linton & Ingrid Van Keilegom, 2003. "Estimation of Semiparametric Models when the Criterion Function Is Not Smooth," Econometrica, Econometric Society, vol. 71(5), pages 1591-1608, September.
    6. Einmahl, J.H.J. & van Keilegom, I., 2006. "Tests for Independence in Nonparametric Regression," Other publications TiSEM 0c6f2c43-aa7d-45c1-9d43-7, Tilburg University, School of Economics and Management.
    7. Lewbel, Arthur, 2000. "Semiparametric qualitative response model estimation with unknown heteroscedasticity or instrumental variables," Journal of Econometrics, Elsevier, vol. 97(1), pages 145-177, July.
    8. Andrews, Donald W.K., 1995. "Nonparametric Kernel Estimation for Semiparametric Models," Econometric Theory, Cambridge University Press, vol. 11(3), pages 560-586, June.
    9. Saavedra, Ángeles & Cao, Ricardo, 1999. "Rate of convergence of a convolution-type estimator of the marginal density of a MA(1) process," Stochastic Processes and their Applications, Elsevier, vol. 80(2), pages 129-155, April.
    10. Lewbel, Arthur, 2007. "Endogenous selection or treatment model estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 777-806, December.
    11. Hayfield, Tristen & Racine, Jeffrey S., 2008. "Nonparametric Econometrics: The np Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i05).
    12. Neumeyer, Natalie & Van Keilegom, Ingrid, 2010. "Estimating the error distribution in nonparametric multiple regression with applications to model testing," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1067-1078, May.
    13. Michael G. Akritas & Ingrid Van Keilegom, 2001. "Non‐parametric Estimation of the Residual Distribution," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(3), pages 549-567, September.
    14. Powell, James L. & Stoker, Thomas M., 1996. "Optimal bandwidth choice for density-weighted averages," Journal of Econometrics, Elsevier, vol. 75(2), pages 291-316, December.
    15. Anton Schick & Wolfgang Wefelmeyer, 2004. "Root n consistent and optimal density estimators for moving average processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 31(1), pages 63-78, March.
    16. Lewbel, Arthur & Schennach, Susanne M., 2007. "A simple ordered data estimator for inverse density weighted expectations," Journal of Econometrics, Elsevier, vol. 136(1), pages 189-211, January.
    17. Powell, James L & Stock, James H & Stoker, Thomas M, 1989. "Semiparametric Estimation of Index Coefficients," Econometrica, Econometric Society, vol. 57(6), pages 1403-1430, November.
    18. Kneip A. & Utikal K. J, 2001. "Inference for Density Families Using Functional Principal Component Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 519-542, June.
    19. Ahn, Hyungtaik, 1997. "Semiparametric Estimation of a Single-Index Model with Nonparametrically Generated Regressors," Econometric Theory, Cambridge University Press, vol. 13(1), pages 3-31, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Henderson, Daniel J. & Sheehan, Alice, 2018. "Kernel-based testing with skewed and heavy-tailed data: Evidence from a nonparametric test for heteroskedasticity," Economics Letters, Elsevier, vol. 172(C), pages 8-11.
    2. Delgado, Miguel A. & Escanciano, Juan Carlos, 2012. "Distribution-free tests of stochastic monotonicity," Journal of Econometrics, Elsevier, vol. 170(1), pages 68-75.
    3. Shang, Han Lin, 2013. "Bayesian bandwidth estimation for a nonparametric functional regression model with unknown error density," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 185-198.
    4. Cattaneo, Matias D. & Jansson, Michael & Newey, Whitney K., 2018. "Alternative Asymptotics And The Partially Linear Model With Many Regressors," Econometric Theory, Cambridge University Press, vol. 34(2), pages 277-301, April.
    5. Zapata, Samuel D. & Carpio, Carlos E., 2014. "Distribution-free Methods for Estimation of Willingness to Pay Models Using Discrete Response Valuation Data," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170453, Agricultural and Applied Economics Association.
    6. Xibin Zhang & Maxwell L. King & Han Lin Shang, 2016. "Bayesian Bandwidth Selection for a Nonparametric Regression Model with Mixed Types of Regressors," Econometrics, MDPI, vol. 4(2), pages 1-27, April.
    7. Han Lin Shang, 2014. "Bayesian bandwidth estimation for a functional nonparametric regression model with mixed types of regressors and unknown error density," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(3), pages 599-615, September.
    8. Shang, Han Lin, 2016. "A Bayesian approach for determining the optimal semi-metric and bandwidth in scalar-on-function quantile regression with unknown error density and dependent functional data," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 95-104.
    9. Li, Shuo & Tu, Yundong, 2016. "n-consistent density estimation in semiparametric regression models," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 91-109.
    10. Henderson Daniel J. & Parmeter Christopher F., 2017. "Root-n Consistent Kernel Density Estimation in Practice," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-10, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Escanciano, Juan Carlos & Jacho-Chávez, David T. & Lewbel, Arthur, 2014. "Uniform convergence of weighted sums of non and semiparametric residuals for estimation and testing," Journal of Econometrics, Elsevier, vol. 178(P3), pages 426-443.
    2. Bravo, Francesco & Escanciano, Juan Carlos & Van Keilegom, Ingrid, 2015. "Wilks' Phenomenon in Two-Step Semiparametric Empirical Likelihood Inference," LIDAM Discussion Papers ISBA 2015016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Yingying Dong & Arthur Lewbel, 2015. "A Simple Estimator for Binary Choice Models with Endogenous Regressors," Econometric Reviews, Taylor & Francis Journals, vol. 34(1-2), pages 82-105, February.
    4. Elia Lapenta, 2022. "A Bootstrap Specification Test for Semiparametric Models with Generated Regressors," Papers 2212.11112, arXiv.org, revised Oct 2023.
    5. Florens, Jean-Pierre & Simar, Léopold & Van Keilegom, Ingrid, 2014. "Frontier estimation in nonparametric location-scale models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 456-470.
    6. Li, Shuo & Tu, Yundong, 2016. "n-consistent density estimation in semiparametric regression models," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 91-109.
    7. Feve, Frederique & Florens, Jean-Pierre & Van Keilegom, Ingrid, 2012. "Estimation of conditional ranks and tests of exogeneity in nonparametric nonseparable models," LIDAM Discussion Papers ISBA 2012036, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Lewbel, Arthur, 2007. "Endogenous selection or treatment model estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 777-806, December.
    9. Le-Yu Chen & Sokbae (Simon) Lee & Myung Jae Sung, 2013. "Maximum score estimation of preference parameters for a binary choice model under uncertainty," CeMMAP working papers CWP14/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    10. Braekers, Roel & Van Keilegom, Ingrid, 2009. "Flexible modeling based on copulas in nonparametric median regression," Journal of Multivariate Analysis, Elsevier, vol. 100(6), pages 1270-1281, July.
    11. Neumeyer, Natalie & Noh, Hohsuk & Van Keilegom, Ingrid, 2014. "Heteroscedastic semiparametric transformation models: estimation and testing for validity," LIDAM Discussion Papers ISBA 2014047, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Simar, Léopold & Vanhems, Anne & Van Keilegom, Ingrid, 2016. "Unobserved heterogeneity and endogeneity in nonparametric frontier estimation," Journal of Econometrics, Elsevier, vol. 190(2), pages 360-373.
    13. Chu, Ba & Jacho-Chávez, David T., 2012. "k-NEAREST NEIGHBOR ESTIMATION OF INVERSE-DENSITY-WEIGHTED EXPECTATIONS WITH DEPENDENT DATA," Econometric Theory, Cambridge University Press, vol. 28(4), pages 769-803, August.
    14. Le‐Yu Chen & Sokbae Lee & Myung Jae Sung, 2014. "Maximum score estimation with nonparametrically generated regressors," Econometrics Journal, Royal Economic Society, vol. 17(3), pages 271-300, October.
    15. Lewbel, Arthur, 2000. "Semiparametric qualitative response model estimation with unknown heteroscedasticity or instrumental variables," Journal of Econometrics, Elsevier, vol. 97(1), pages 145-177, July.
    16. Kristensen, Dennis, 2010. "Pseudo-maximum likelihood estimation in two classes of semiparametric diffusion models," Journal of Econometrics, Elsevier, vol. 156(2), pages 239-259, June.
    17. Jun Zhang & Zhenghui Feng & Peirong Xu, 2015. "Estimating the conditional single-index error distribution with a partial linear mean regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 61-83, March.
    18. Arthur Lewbel, 2012. "An Overview of the Special Regressor Method," Boston College Working Papers in Economics 810, Boston College Department of Economics.
    19. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    20. Mammen, Enno & Rothe, Christoph & Schienle, Melanie, 2016. "Semiparametric Estimation With Generated Covariates," Econometric Theory, Cambridge University Press, vol. 32(5), pages 1140-1177, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:167:y:2012:i:2:p:305-316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.