[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v287y2014icp27-35.html
   My bibliography  Save this article

Integrating harvest scheduling and reserve design to improve biodiversity conservation

Author

Listed:
  • Marshalek, Elaina C.
  • Ramage, Benjamin S.
  • Potts, Matthew D.
Abstract
Reserve establishment and strategic harvest planning are two longstanding but often separate approaches to conserving biodiversity in working landscapes. Our paper unites these fields and explores how ecological characteristics of landscapes influence conservation outcomes, with a particular consideration of tropical forests. We used an integer programming model to compare the performance of different management designs on simulated landscapes with different species diversity values and degrees of conspecific spatial aggregation. We explored three classes of reserve and harvest plans: optimal, random, and fixed-pattern (the last of which is most common in tropical forest management). Optimal designs (and performance criteria) were rooted in the Optimized Floating Refugia strategy, a new approach to landscape-level forest management that assumes local extinctions will occur and seeks to facilitate recolonization for as many species as possible via strategic spatiotemporal planning. We found several interesting interactions between harvest planning and reserve establishment. On landscapes with ecological characteristics resembling those of tropical forests (high species diversity and high conspecific aggregation), strategic harvest plans with no reserves saved more species than fixed-pattern, aggregated harvest plans with over 20 percent of stands set aside as reserves. Our findings also suggest an important rule of thumb: less aggregated harvest plans lead to fewer extinctions than more aggregated harvest plans. Overall, we found that the integration of harvest planning and reserve design led to novel insights, and that the divergence in absolute performance between different management regimes (but not the ordinal ranking) was highly dependent on the ecological characteristics of the landscape.

Suggested Citation

  • Marshalek, Elaina C. & Ramage, Benjamin S. & Potts, Matthew D., 2014. "Integrating harvest scheduling and reserve design to improve biodiversity conservation," Ecological Modelling, Elsevier, vol. 287(C), pages 27-35.
  • Handle: RePEc:eee:ecomod:v:287:y:2014:i:c:p:27-35
    DOI: 10.1016/j.ecolmodel.2014.04.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380014002129
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2014.04.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miguel Constantino & Isabel Martins & José G. Borges, 2008. "A New Mixed-Integer Programming Model for Harvest Scheduling Subject to Maximum Area Restrictions," Operations Research, INFORMS, vol. 56(3), pages 542-551, June.
    2. Robert G. Haight & Charles S. Revelle & Stephanie A. Snyder, 2000. "An Integer Optimization Approach to a Probabilistic Reserve Site Selection Problem," Operations Research, INFORMS, vol. 48(5), pages 697-708, October.
    3. Olschewski, Roland & Benítez, Pablo C., 2010. "Optimizing joint production of timber and carbon sequestration of afforestation projects," Journal of Forest Economics, Elsevier, vol. 16(1), pages 1-10, January.
    4. Venema, Henry David & Calamai, Paul H. & Fieguth, Paul, 2005. "Forest structure optimization using evolutionary programming and landscape ecology metrics," European Journal of Operational Research, Elsevier, vol. 164(2), pages 423-439, July.
    5. Groeneveld, Rolf A., 2010. "Species-specific spatial characteristics in reserve site selection," Ecological Economics, Elsevier, vol. 69(12), pages 2307-2314, October.
    6. Costello, Christopher & Polasky, Stephen, 2004. "Dynamic reserve site selection," Resource and Energy Economics, Elsevier, vol. 26(2), pages 157-174, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Billionnet, Alain, 2013. "Mathematical optimization ideas for biodiversity conservation," European Journal of Operational Research, Elsevier, vol. 231(3), pages 514-534.
    2. Sándor F. Tóth & Robert G. Haight & Luke W. Rogers, 2011. "Dynamic Reserve Selection: Optimal Land Retention with Land-Price Feedbacks," Operations Research, INFORMS, vol. 59(5), pages 1059-1078, October.
    3. Maarten Punt & Hans-Peter Weikard & Ekko Ierland & Jan Stel, 2012. "Large Scale Marine Protected Areas for Biodiversity Conservation Along a Linear Gradient: Cooperation, Strategic Behavior or Conservation Autarky?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 53(2), pages 203-228, October.
    4. Onal, Hayri & Yanprechaset, Pornchanok, 2007. "Site accessibility and prioritization of nature reserves," Ecological Economics, Elsevier, vol. 60(4), pages 763-773, February.
    5. Hamaide, Bertrand & Albers, Heidi J. & Busby, Gwenlyn, 2014. "Backup coverage models in nature reserve site selection with spatial spread risk heterogeneity," Socio-Economic Planning Sciences, Elsevier, vol. 48(2), pages 158-167.
    6. Haider, Zulqarnain & Charkhgard, Hadi & Kwon, Changhyun, 2018. "A robust optimization approach for solving problems in conservation planning," Ecological Modelling, Elsevier, vol. 368(C), pages 288-297.
    7. Hamaide, Bertrand & Sheerin, Jack, 2011. "Species protection from current reserves: Economic and biological considerations, spatial issues and policy evaluation," Ecological Economics, Elsevier, vol. 70(4), pages 667-675, February.
    8. Beyer, Hawthorne L. & Dujardin, Yann & Watts, Matthew E. & Possingham, Hugh P., 2016. "Solving conservation planning problems with integer linear programming," Ecological Modelling, Elsevier, vol. 328(C), pages 14-22.
    9. Billionnet, Alain, 2011. "Solving the probabilistic reserve selection problem," Ecological Modelling, Elsevier, vol. 222(3), pages 546-554.
    10. Isabel Martins & Filipe Alvelos & Miguel Constantino, 2012. "A branch-and-price approach for harvest scheduling subject to maximum area restrictions," Computational Optimization and Applications, Springer, vol. 51(1), pages 363-385, January.
    11. Gren, Ing-Marie & Carlsson, Mattias, 2011. "Estimation of cost functions for preserving biodiversity in Swedish forests," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114596, European Association of Agricultural Economists.
    12. Costello, Christopher & Molina, Renato, 2021. "Transboundary marine protected areas," Resource and Energy Economics, Elsevier, vol. 65(C).
    13. Sims, Katharine R.E., 2010. "Conservation and development: Evidence from Thai protected areas," Journal of Environmental Economics and Management, Elsevier, vol. 60(2), pages 94-114, September.
    14. Sinha, Ankur & Rämö, Janne & Malo, Pekka & Kallio, Markku & Tahvonen, Olli, 2017. "Optimal management of naturally regenerating uneven-aged forests," European Journal of Operational Research, Elsevier, vol. 256(3), pages 886-900.
    15. Wang, Haoluan, 2017. "Land Conservation for Open Space: The Impact of Neighbors and the Natural Environment," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258125, Agricultural and Applied Economics Association.
    16. Ando, Amy Whritenour & Mallory, Mindy L., 2012. "The Perils of Shortcuts in Efficient Conservation Portfolio Design," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 125073, Agricultural and Applied Economics Association.
    17. Ruliffson, Jane A. & Haight, Robert G. & Gobster, Paul H. & Homans, Frances R., 2001. "Exploring Goal Tradeoffs In Metropolitan Natural Area Protection," 2001 Annual meeting, August 5-8, Chicago, IL 20642, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    18. Jeffrey D. Camm & Susan K. Norman & Stephen Polasky & Andrew R. Solow, 2002. "Nature Reserve Site Selection to Maximize Expected Species Covered," Operations Research, INFORMS, vol. 50(6), pages 946-955, December.
    19. Ran Wei & Alan Murray, 2015. "Spatial uncertainty in harvest scheduling," Annals of Operations Research, Springer, vol. 232(1), pages 275-289, September.
    20. Eppink, Florian V. & van den Bergh, Jeroen C.J.M., 2007. "Ecological theories and indicators in economic models of biodiversity loss and conservation: A critical review," Ecological Economics, Elsevier, vol. 61(2-3), pages 284-293, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:287:y:2014:i:c:p:27-35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.