[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v146y2018icp69-84.html
   My bibliography  Save this article

Less than 2°C? An Economic-Environmental Evaluation of the Paris Agreement

Author

Listed:
  • Nieto, Jaime
  • Carpintero, Óscar
  • Miguel, Luis J.
Abstract
The literature dedicated to the analysis of the different climate agreements has usually focused on the effectiveness of the aims for emissions in the light of the advance in climate change. This article quantifies the variation in emissions that the Intended Nationally Determined Contributions (INDCs) will entail and their financial allocation and policies country-by-country and regionally. The objective is evaluating the Paris Agreement feasibility regarding the INDCs and its economic and environmental constraints. The criteria through which the 161 INDCs are analysed are as follows: i/ socio-economic impact of the transition; ii/ focus on energy management; iii/ substitution of non-renewable sources; iv/ the role of technology; v/ equality of the transition; vi/ compliance with emission reductions. The results obtained show that the Paris Agreement excessively relies on external financial support (41.4%). Moreover, its unilateralist approach, the socio-economic and biophysical constraints could be the underlying cause of the ineffectiveness of the 2°C objective. This way, each country would emit an average of 37.8% more than in the years 2005–2015. When this is weighted, the figure would be a 19.3% increase, due mainly to the increases in China and India. These figures would lead the temperatures up to 3°–4°C.

Suggested Citation

  • Nieto, Jaime & Carpintero, Óscar & Miguel, Luis J., 2018. "Less than 2°C? An Economic-Environmental Evaluation of the Paris Agreement," Ecological Economics, Elsevier, vol. 146(C), pages 69-84.
  • Handle: RePEc:eee:ecolec:v:146:y:2018:i:c:p:69-84
    DOI: 10.1016/j.ecolecon.2017.10.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800916314513
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2017.10.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Bruyn, S. M. & van den Bergh, J. C. J. M. & Opschoor, J. B., 1998. "Economic growth and emissions: reconsidering the empirical basis of environmental Kuznets curves," Ecological Economics, Elsevier, vol. 25(2), pages 161-175, May.
    2. Peng, Shuijun & Zhang, Wencheng & Sun, Chuanwang, 2016. "‘Environmental load displacement’ from the North to the South: A consumption-based perspective with a focus on China," Ecological Economics, Elsevier, vol. 128(C), pages 147-158.
    3. Duarte, Rosa & Mainar, Alfredo & Sánchez-Chóliz, Julio, 2013. "The role of consumption patterns, demand and technological factors on the recent evolution of CO2 emissions in a group of advanced economies," Ecological Economics, Elsevier, vol. 96(C), pages 1-13.
    4. Wagner, Martin, 2008. "The carbon Kuznets curve: A cloudy picture emitted by bad econometrics?," Resource and Energy Economics, Elsevier, vol. 30(3), pages 388-408, August.
    5. Stern, David I., 2004. "The Rise and Fall of the Environmental Kuznets Curve," World Development, Elsevier, vol. 32(8), pages 1419-1439, August.
    6. Moriarty, Patrick & Honnery, Damon, 2016. "Can renewable energy power the future?," Energy Policy, Elsevier, vol. 93(C), pages 3-7.
    7. Batra, Ravi & Beladi, Hamid & Frasca, Ralph, 1998. "Environmental pollution and world trade," Ecological Economics, Elsevier, vol. 27(2), pages 171-182, November.
    8. Peters, Jeffrey C., 2017. "Natural gas and spillover from the US Clean Power Plan into the Paris Agreement," Energy Policy, Elsevier, vol. 106(C), pages 41-47.
    9. de Castro, Carlos & Mediavilla, Margarita & Miguel, Luis Javier & Frechoso, Fernando, 2013. "Global solar electric potential: A review of their technical and sustainable limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 824-835.
    10. Brian C. Murray & Bruce A. McCarl & Heng-Chi Lee, 2004. "Estimating Leakage from Forest Carbon Sequestration Programs," Land Economics, University of Wisconsin Press, vol. 80(1), pages 109-124.
    11. Mikel González-Eguino & Iñigo Capellán-Pérez & Iñaki Arto & Alberto Ansuategi & Anil Markandya, 2017. "Industrial and terrestrial carbon leakage under climate policy fragmentation," Climate Policy, Taylor & Francis Journals, vol. 17(0), pages 148-169, June.
    12. Liobikienė, Genovaitė & Butkus, Mindaugas, 2017. "The European Union possibilities to achieve targets of Europe 2020 and Paris agreement climate policy," Renewable Energy, Elsevier, vol. 106(C), pages 298-309.
    13. Andersson, Jan Otto & Lindroth, Mattias, 2001. "Ecologically unsustainable trade," Ecological Economics, Elsevier, vol. 37(1), pages 113-122, April.
    14. Leung, Dennis Y.C. & Caramanna, Giorgio & Maroto-Valer, M. Mercedes, 2014. "An overview of current status of carbon dioxide capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 426-443.
    15. Fouquet, Roger, 2010. "The slow search for solutions: Lessons from historical energy transitions by sector and service," Energy Policy, Elsevier, vol. 38(11), pages 6586-6596, November.
    16. Cole, Matthew A., 2004. "US environmental load displacement: examining consumption, regulations and the role of NAFTA," Ecological Economics, Elsevier, vol. 48(4), pages 439-450, April.
    17. de Castro, Carlos & Mediavilla, Margarita & Miguel, Luis Javier & Frechoso, Fernando, 2011. "Global wind power potential: Physical and technological limits," Energy Policy, Elsevier, vol. 39(10), pages 6677-6682, October.
    18. Monica Di Donato & Pedro L. Lomas & Óscar Carpintero, 2015. "Metabolism and Environmental Impacts of Household Consumption: A Review on the Assessment, Methodology, and Drivers," Journal of Industrial Ecology, Yale University, vol. 19(5), pages 904-916, October.
    19. Erickson, Peter & Lazarus, Michael & Spalding-Fecher, Randall, 2014. "Net climate change mitigation of the Clean Development Mechanism," Energy Policy, Elsevier, vol. 72(C), pages 146-154.
    20. Capellán-Pérez, Iñigo & Mediavilla, Margarita & de Castro, Carlos & Carpintero, Óscar & Miguel, Luis Javier, 2014. "Fossil fuel depletion and socio-economic scenarios: An integrated approach," Energy, Elsevier, vol. 77(C), pages 641-666.
    21. Verena Seufert & Navin Ramankutty & Jonathan A. Foley, 2012. "Comparing the yields of organic and conventional agriculture," Nature, Nature, vol. 485(7397), pages 229-232, May.
    22. de Castro, Carlos & Carpintero, Óscar & Frechoso, Fernando & Mediavilla, Margarita & de Miguel, Luis J., 2014. "A top-down approach to assess physical and ecological limits of biofuels," Energy, Elsevier, vol. 64(C), pages 506-512.
    23. Markard, Jochen & Raven, Rob & Truffer, Bernhard, 2012. "Sustainability transitions: An emerging field of research and its prospects," Research Policy, Elsevier, vol. 41(6), pages 955-967.
    24. Muradian, Roldan & O'Connor, Martin & Martinez-Alier, Joan, 2002. "Embodied pollution in trade: estimating the 'environmental load displacement' of industrialised countries," Ecological Economics, Elsevier, vol. 41(1), pages 51-67, April.
    25. Ralph Alig & Darius Adams & Bruce McCarl & J. Callaway & Steven Winnett, 1997. "Assessing effects of mitigation strategies for global climate change with an intertemporal model of the U.S. forest and agriculture sectors," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 9(3), pages 259-274, April.
    26. Shafik, Nemat, 1994. "Economic Development and Environmental Quality: An Econometric Analysis," Oxford Economic Papers, Oxford University Press, vol. 46(0), pages 757-773, Supplemen.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José Miguel Paredes-Parra & Antonio Mateo-Aroca & Guillermo Silvente-Niñirola & María C. Bueso & Ángel Molina-García, 2018. "PV Module Monitoring System Based on Low-Cost Solutions: Wireless Raspberry Application and Assessment," Energies, MDPI, vol. 11(11), pages 1-20, November.
    2. Mohsin, Muhammad & Taghizadeh-Hesary, Farhad & Iqbal, Nadeem & Saydaliev, Hayot Berk, 2022. "The role of technological progress and renewable energy deployment in green economic growth," Renewable Energy, Elsevier, vol. 190(C), pages 777-787.
    3. Fraccascia, Luca & Giannoccaro, Ilaria & Albino, Vito, 2021. "Ecosystem indicators for measuring industrial symbiosis," Ecological Economics, Elsevier, vol. 183(C).
    4. Manfroni, Michele & Bukkens, Sandra G.F. & Giampietro, Mario, 2021. "The declining performance of the oil sector: Implications for global climate change mitigation," Applied Energy, Elsevier, vol. 298(C).
    5. Huy Pham & Van Nguyen & Vikash Ramiah & Priyantha Mudalige & Imad Moosa, 2019. "The Effects of Environmental Regulation on the Singapore Stock Market," JRFM, MDPI, vol. 12(4), pages 1-19, November.
    6. Nieto, Jaime & Carpintero, Óscar & Miguel, Luis J. & de Blas, Ignacio, 2020. "Macroeconomic modelling under energy constraints: Global low carbon transition scenarios," Energy Policy, Elsevier, vol. 137(C).
    7. Juan Telleria & Jorge Garcia-Arias, 2022. "The fantasmatic narrative of ‘sustainable development’. A political analysis of the 2030 Global Development Agenda," Environment and Planning C, , vol. 40(1), pages 241-259, February.
    8. Michel Damian & Luigi De Paoli, 2017. "Climate change: Back to development," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2017(3), pages 5-24.
    9. Zhang, Dongyang & Mohsin, Muhammad & Rasheed, Abdul Khaliq & Chang, Youngho & Taghizadeh-Hesary, Farhad, 2021. "Public spending and green economic growth in BRI region: Mediating role of green finance," Energy Policy, Elsevier, vol. 153(C).
    10. Banacloche, Santacruz & Cadarso, Maria Angeles & Monsalve, Fabio & Lechon, Yolanda, 2020. "Assessment of the sustainability of Mexico green investments in the road to Paris," Energy Policy, Elsevier, vol. 141(C).
    11. Laura Rodríguez-Fernández & Ana Belén Fernández Carvajal & María Bujidos-Casado, 2020. "Allocation of Greenhouse Gas Emissions Using the Fairness Principle: A Multi-Country Analysis," Sustainability, MDPI, vol. 12(14), pages 1-15, July.
    12. Alekna Rokas & Kazlauskienė Eglė, 2020. "Evaluation Indicators of Green Economic Development: The Case of the Baltic Countries," Economics and Culture, Sciendo, vol. 17(1), pages 150-163, June.
    13. Duan, Hongbo & Zhang, Gupeng & Wang, Shouyang & Fan, Ying, 2019. "Integrated benefit-cost analysis of China's optimal adaptation and targeted mitigation," Ecological Economics, Elsevier, vol. 160(C), pages 76-86.
    14. Ilaria Perissi & Gianluca Martelloni & Ugo Bardi & Davide Natalini & Aled Jones & Angel Nikolaev & Lukas Eggler & Martin Baumann & Roger Samsó & Jordi Solé, 2021. "Cross-Validation of the MEDEAS Energy-Economy-Environment Model with the Integrated MARKAL-EFOM System (TIMES) and the Long-Range Energy Alternatives Planning System (LEAP)," Sustainability, MDPI, vol. 13(4), pages 1-27, February.
    15. Cano-Rodríguez, Sara & Rubio-Varas, Mar & Sesma-Martín, Diego, 2022. "At the crossroad between green and thirsty: Carbon emissions and water consumption of Spanish thermoelectricity generation, 1969–2019," Ecological Economics, Elsevier, vol. 195(C).
    16. Sharafat Ali & Haiyan Xu & Najid Ahmad, 2021. "Reviewing the strategies for climate change and sustainability after the US defiance of the Paris Agreement: an AHP–GMCR-based conflict resolution approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11881-11912, August.
    17. Gaspar Manzanera-Benito & Iñigo Capellán-Pérez, 2021. "Mapping the Energy Flows and GHG Emissions of a Medium-Size City: The Case of Valladolid (Spain)," Sustainability, MDPI, vol. 13(23), pages 1-29, November.
    18. Okorie, David Iheke & Wesseh, Presley K., 2023. "Climate agreements and carbon intensity: Towards increased production efficiency and technical progress?," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 300-313.
    19. Michel Damian & Luigi de Paoli, 2018. "Climate change: Back to development," Post-Print hal-01870974, HAL.
    20. Li, Weiqing & Chien, Fengsheng & Ngo, Quang-Thanh & Nguyen, Tien-Dung & Iqbal, Sajid & Bilal, Ahmad Raza, 2021. "Vertical financial disparity, energy prices and emission reduction: Empirical insights from Pakistan," MPRA Paper 109672, University Library of Munich, Germany.
    21. Li, Weiqing & Chien, Fengsheng & Hsu, Ching-Chi & Zhang, YunQian & Nawaz, Muhammad Atif & Iqbal, Sajid & Mohsin, Muhammad, 2021. "Nexus between energy poverty and energy efficiency: Estimating the long-run dynamics," Resources Policy, Elsevier, vol. 72(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nieto, Jaime & Carpintero, Óscar & Miguel, Luis J. & de Blas, Ignacio, 2020. "Macroeconomic modelling under energy constraints: Global low carbon transition scenarios," Energy Policy, Elsevier, vol. 137(C).
    2. Valeria Costantini & Chiara Martini, 2010. "A Modified Environmental Kuznets Curve for sustainable development assessment using panel data," International Journal of Global Environmental Issues, Inderscience Enterprises Ltd, vol. 10(1/2), pages 84-122.
    3. Dupont, Elise & Koppelaar, Rembrandt & Jeanmart, Hervé, 2018. "Global available wind energy with physical and energy return on investment constraints," Applied Energy, Elsevier, vol. 209(C), pages 322-338.
    4. Wang, Kuan-Min, 2012. "Modelling the nonlinear relationship between CO2 emissions from oil and economic growth," Economic Modelling, Elsevier, vol. 29(5), pages 1537-1547.
    5. Carlos de Castro & Iñigo Capellán-Pérez, 2020. "Standard, Point of Use, and Extended Energy Return on Energy Invested (EROI) from Comprehensive Material Requirements of Present Global Wind, Solar, and Hydro Power Technologies," Energies, MDPI, vol. 13(12), pages 1-43, June.
    6. Marzio Galeotti & Matteo Manera & Alessandro Lanza, 2006. "On the Robustness of Robustness Checks of the Environmental Kuznets Curve," Working Papers 2006.22, Fondazione Eni Enrico Mattei.
    7. Ikonnikova, Svetlana A. & Scanlon, Bridget R. & Berdysheva, Sofia A., 2023. "A global energy system perspective on hydrogen Trade: A framework for the market color and the size analysis," Applied Energy, Elsevier, vol. 330(PA).
    8. Liddle, Brantley & Messinis, George, 2015. "Revisiting sulfur Kuznets curves with endogenous breaks modeling: Substantial evidence of inverted-Us/Vs for individual OECD countries," Economic Modelling, Elsevier, vol. 49(C), pages 278-285.
    9. Capellán-Pérez, Iñigo & Mediavilla, Margarita & de Castro, Carlos & Carpintero, Óscar & Miguel, Luis Javier, 2014. "Fossil fuel depletion and socio-economic scenarios: An integrated approach," Energy, Elsevier, vol. 77(C), pages 641-666.
    10. Capellán-Pérez, Iñigo & de Castro, Carlos & Arto, Iñaki, 2017. "Assessing vulnerabilities and limits in the transition to renewable energies: Land requirements under 100% solar energy scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 760-782.
    11. Romero-Avila, Diego, 2008. "Questioning the empirical basis of the environmental Kuznets curve for CO2: New evidence from a panel stationarity test robust to multiple breaks and cross-dependence," Ecological Economics, Elsevier, vol. 64(3), pages 559-574, January.
    12. Barakatou Atte-Oudeyi & Bruno Kestemont & Jean Luc De Meulemeester, 2016. "Road Transport, Economic Growth and Carbon Dioxide Emissions in the BRIICS: Conditions For a Low Carbon Economic Development," Working Papers CEB 16-023, ULB -- Universite Libre de Bruxelles.
    13. Galeotti, Marzio & Manera, Matteo & Lanza, Alessandro, 2006. "On the Robustness of Robustness Checks of the Environmental Kuznets Curve," Climate Change Modelling and Policy Working Papers 12045, Fondazione Eni Enrico Mattei (FEEM).
    14. Bennedsen, Mikkel & Hillebrand, Eric & Jensen, Sebastian, 2023. "A neural network approach to the environmental Kuznets curve," Energy Economics, Elsevier, vol. 126(C).
    15. Massimiliano Mazzanti & Anna Montini & Roberto Zoboli, 2008. "Environmental Kuznets Curves for Air Pollutant Emissions in Italy: Evidence from Environmental Accounts (NAMEA) Panel Data," Economic Systems Research, Taylor & Francis Journals, vol. 20(3), pages 277-301.
    16. Carlos Castro & Iñigo Capellán-Pérez, 2018. "Concentrated Solar Power: Actual Performance and Foreseeable Future in High Penetration Scenarios of Renewable Energies," Biophysical Economics and Resource Quality, Springer, vol. 3(3), pages 1-20, September.
    17. Mikkel Bennedsen & Eric Hillebrand & Sebastian Jensen, 2022. "A Neural Network Approach to the Environmental Kuznets Curve," CREATES Research Papers 2022-09, Department of Economics and Business Economics, Aarhus University.
    18. Nektarios Aslanidis, 2009. "Environmental Kuznets Curves for Carbon Emissions: A Critical Survey," Working Papers 2009.75, Fondazione Eni Enrico Mattei.
    19. Miguel Rodríguez & Yolanda Pena-Boquete, 2013. "Mishandling carbon intensities," Working Papers 1302, Universidade de Vigo, Departamento de Economía Aplicada.
    20. Jie He, 2007. "Is the Environmental Kuznets Curve hypothesis valid for developing countries? A survey," Cahiers de recherche 07-03, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:146:y:2018:i:c:p:69-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.