[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v157y2017icp71-74.html
   My bibliography  Save this article

Confidence intervals in regressions with estimated factors and idiosyncratic components

Author

Listed:
  • Fosten, Jack
Abstract
This paper shows that HAC standard errors must be adjusted when constructing confidence intervals in regressions involving both the factors and idiosyncratic components estimated from a big dataset. This result is in contrast to the seminal result of Bai and Ng (2006) where the assumption that T∕N→0 is sufficient to eliminate the effect of estimation error, where T and N are the time-series and cross-sectional dimensions. Simulations show vast improvements in the coverage rates of the adjusted confidence intervals over the unadjusted ones.

Suggested Citation

  • Fosten, Jack, 2017. "Confidence intervals in regressions with estimated factors and idiosyncratic components," Economics Letters, Elsevier, vol. 157(C), pages 71-74.
  • Handle: RePEc:eee:ecolet:v:157:y:2017:i:c:p:71-74
    DOI: 10.1016/j.econlet.2017.05.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176517302203
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2017.05.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gonçalves, Sílvia & Perron, Benoit, 2014. "Bootstrapping factor-augmented regression models," Journal of Econometrics, Elsevier, vol. 182(1), pages 156-173.
    2. Gonçalves, Sílvia & McCracken, Michael W. & Perron, Benoit, 2017. "Tests of equal accuracy for nested models with estimated factors," Journal of Econometrics, Elsevier, vol. 198(2), pages 231-252.
    3. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    4. Charles Engel & Nelson C. Mark & Kenneth D. West, 2015. "Factor Model Forecasts of Exchange Rates," Econometric Reviews, Taylor & Francis Journals, vol. 34(1-2), pages 32-55, February.
    5. Antoine Djogbenou & Silvia Gonçalves & Benoit Perron, 2015. "Bootstrap inference in regressions with estimated factors and serial correlation," CIRANO Working Papers 2015s-20, CIRANO.
    6. Jushan Bai & Serena Ng, 2006. "Confidence Intervals for Diffusion Index Forecasts and Inference for Factor-Augmented Regressions," Econometrica, Econometric Society, vol. 74(4), pages 1133-1150, July.
    7. Bai, Jushan & Ng, Serena, 2013. "Principal components estimation and identification of static factors," Journal of Econometrics, Elsevier, vol. 176(1), pages 18-29.
    8. J. B. Taylor & Harald Uhlig (ed.), 2016. "Handbook of Macroeconomics," Handbook of Macroeconomics, Elsevier, edition 1, volume 2, number 2.
    9. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    10. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yohei Yamamoto & Naoko Hara, 2022. "Identifying factor‐augmented vector autoregression models via changes in shock variances," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 722-745, June.
    2. Javier Maldonado & Esther Ruiz, 2021. "Accurate Confidence Regions for Principal Components Factors," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(6), pages 1432-1453, December.
    3. Karen Miranda & Pilar Poncela & Esther Ruiz, 2022. "Dynamic factor models: Does the specification matter?," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 13(1), pages 397-428, May.
    4. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    5. Luke Hartigan & Michelle Wright, 2021. "Financial Conditions and Downside Risk to Economic Activity in Australia," RBA Research Discussion Papers rdp2021-03, Reserve Bank of Australia.
    6. Gonçalves, Sílvia & Perron, Benoit, 2020. "Bootstrapping factor models with cross sectional dependence," Journal of Econometrics, Elsevier, vol. 218(2), pages 476-495.
    7. repec:cte:wsrepe:23974 is not listed on IDEAS
    8. Antoine A. Djogbenou, 2021. "Model selection in factor-augmented regressions with estimated factors," Econometric Reviews, Taylor & Francis Journals, vol. 40(5), pages 470-503, April.
    9. Jushan Bai & Serena Ng, 2017. "Principal Components and Regularized Estimation of Factor Models," Papers 1708.08137, arXiv.org, revised Nov 2017.
    10. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    11. Diego Fresoli & Pilar Poncela & Esther Ruiz, 2024. "Dealing with idiosyncratic cross-correlation when constructing confidence regions for PC factors," Papers 2407.06883, arXiv.org.
    12. Antoine A. Djogbenou, 2020. "Comovements in the real activity of developed and emerging economies: A test of global versus specific international factors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(3), pages 344-370, April.
    13. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    14. Demetrescu, Matei & Hacıoğlu Hoke, Sinem, 2019. "Predictive regressions under asymmetric loss: Factor augmentation and model selection," International Journal of Forecasting, Elsevier, vol. 35(1), pages 80-99.
    15. Freyaldenhoven, Simon, 2022. "Factor models with local factors — Determining the number of relevant factors," Journal of Econometrics, Elsevier, vol. 229(1), pages 80-102.
    16. Jack Fosten, 2016. "Forecast evaluation with factor-augmented models," University of East Anglia School of Economics Working Paper Series 2016-05, School of Economics, University of East Anglia, Norwich, UK..
    17. Bai, Jushan & Ng, Serena, 2019. "Rank regularized estimation of approximate factor models," Journal of Econometrics, Elsevier, vol. 212(1), pages 78-96.
    18. Kihwan Kim & Hyun Hak Kim & Norman R. Swanson, 2023. "Mixing mixed frequency and diffusion indices in good times and in bad: an assessment based on historical data around the great recession of 2008," Empirical Economics, Springer, vol. 64(3), pages 1421-1469, March.
    19. Rueben Ellul & Germano Ruisi, 2022. "Nowcasting the Maltese economy with a dynamic factor model," CBM Working Papers WP/02/2022, Central Bank of Malta.
    20. Jack Fosten, 2017. "Model selection with estimated factors and idiosyncratic components," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1087-1106, September.
    21. Luke Hartigan & Michelle Wright, 2023. "Monitoring Financial Conditions and Downside Risk to Economic Activity in Australia," The Economic Record, The Economic Society of Australia, vol. 99(325), pages 253-287, June.

    More about this item

    Keywords

    Factor model; Idiosyncratic component; Inference; Confidence intervals;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:157:y:2017:i:c:p:71-74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.