[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v116y2012i1p23-25.html
   My bibliography  Save this article

Identifying monotonic and non-monotonic relationships

Author

Listed:
  • Yitzhaki, Shlomo
  • Schechtman, Edna
Abstract
We suggest graphical tools that indicate whether the relationship between variables in regression is monotonic. If not, the tools identify sections with different signs and inform on possibilities and types of monotonic transformations that can change the sign of the coefficient.

Suggested Citation

  • Yitzhaki, Shlomo & Schechtman, Edna, 2012. "Identifying monotonic and non-monotonic relationships," Economics Letters, Elsevier, vol. 116(1), pages 23-25.
  • Handle: RePEc:eee:ecolet:v:116:y:2012:i:1:p:23-25
    DOI: 10.1016/j.econlet.2011.12.123
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016517651100646X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2011.12.123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shlomo Yitzhaki & Edna Schechtman, 2004. "The Gini Instrumental Variable, or the “double instrumental variable” estimator," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 287-313.
    2. Yitzhaki, Shlomo, 1990. "On the Sensitivity of a Regression Coefficient to Monotonic Transformations," Econometric Theory, Cambridge University Press, vol. 6(2), pages 165-169, June.
    3. James J. Heckman & Sergio Urzua & Edward Vytlacil, 2006. "Understanding Instrumental Variables in Models with Essential Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 88(3), pages 389-432, August.
    4. Yitzhaki, Shlomo, 1996. "On Using Linear Regressions in Welfare Economics," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 478-486, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Grazia Pittau & Shlomo Yitzhaki & Roberto Zelli, 2015. "The “Make-up” of a Regression Coefficient: Gender Gaps in the European Labor Market," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 61(3), pages 401-421, September.
    2. Schröder, Carsten & Yitzhaki, Shlomo, 2017. "Revisiting the evidence for cardinal treatment of ordinal variables," European Economic Review, Elsevier, vol. 92(C), pages 337-358.
    3. M. Grazia Pittau & Shlomo Yitzhaki & Roberto Zelli, 2011. "The make-up of a regression coefficient: An application to gender," DSS Empirical Economics and Econometrics Working Papers Series 2011/3, Centre for Empirical Economics and Econometrics, Department of Statistics, "Sapienza" University of Rome.
    4. Gignac, Gilles E. & Bartulovich, Asher & Salleo, Emilee, 2019. "Maximum effort may not be required for valid intelligence test score interpretations," Intelligence, Elsevier, vol. 75(C), pages 73-84.
    5. Edna Schechtman & Shlomo Yitzhaki & Taina Pudalov, 2011. "Gini’s multiple regressions: two approaches and their interaction," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 67-99.
    6. Shlomo Yitzhaki, 2015. "Gini’s mean difference offers a response to Leamer’s critique," METRON, Springer;Sapienza Università di Roma, vol. 73(1), pages 31-43, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edna Schechtman & Shlomo Yitzhaki & Taina Pudalov, 2011. "Gini’s multiple regressions: two approaches and their interaction," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 67-99.
    2. Sloczynski, Tymon, 2018. "A General Weighted Average Representation of the Ordinary and Two-Stage Least Squares Estimands," IZA Discussion Papers 11866, Institute of Labor Economics (IZA).
    3. Shalit, Haim, 2012. "Using OLS to test for normality," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 2050-2058.
    4. Heckman, James J. & Schmierer, Daniel & Urzua, Sergio, 2010. "Testing the correlated random coefficient model," Journal of Econometrics, Elsevier, vol. 158(2), pages 177-203, October.
    5. Anirban Basu & James J. Heckman & Salvador Navarro-Lozano & Sergio Urzua, 2007. "Use of instrumental variables in the presence of heterogeneity and self-selection: an application to treatments of breast cancer patients," Health Economics, John Wiley & Sons, Ltd., vol. 16(11), pages 1133-1157.
    6. Tymon S{l}oczy'nski, 2018. "Interpreting OLS Estimands When Treatment Effects Are Heterogeneous: Smaller Groups Get Larger Weights," Papers 1810.01576, arXiv.org, revised May 2020.
    7. M. Grazia Pittau & Shlomo Yitzhaki & Roberto Zelli, 2015. "The “Make-up” of a Regression Coefficient: Gender Gaps in the European Labor Market," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 61(3), pages 401-421, September.
    8. Rashmi Barua & Kevin Lang, 2009. "School Entry, Educational Attainment and Quarter of Birth: A Cautionary Tale of LATE," NBER Working Papers 15236, National Bureau of Economic Research, Inc.
    9. Shlomo Yitzhaki, 2015. "Gini’s mean difference offers a response to Leamer’s critique," METRON, Springer;Sapienza Università di Roma, vol. 73(1), pages 31-43, April.
    10. Shoya Ishimaru, 2024. "Empirical Decomposition of the IV-OLS Gap with Heterogeneous and Nonlinear Effects," The Review of Economics and Statistics, MIT Press, vol. 106(2), pages 505-520, March.
    11. M. Grazia Pittau & Shlomo Yitzhaki & Roberto Zelli, 2011. "The make-up of a regression coefficient: An application to gender," DSS Empirical Economics and Econometrics Working Papers Series 2011/3, Centre for Empirical Economics and Econometrics, Department of Statistics, "Sapienza" University of Rome.
    12. Caetano, Carolina & Caetano, Gregorio & Nielsen, Eric, 2024. "Are children spending too much time on enrichment activities?," Economics of Education Review, Elsevier, vol. 98(C).
    13. Shlomo Yitzhaki, 2003. "Gini’s Mean difference: a superior measure of variability for non-normal distributions," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 285-316.
    14. Kunievsky, Nadav, 2024. "On the interpretation of the Intergenerational Elasticity and the Rank–Rank coefficients for cross country comparison," Economics Letters, Elsevier, vol. 236(C).
    15. Schröder, Carsten & Yitzhaki, Shlomo, 2017. "Revisiting the evidence for cardinal treatment of ordinal variables," European Economic Review, Elsevier, vol. 92(C), pages 337-358.
    16. Słoczyński, Tymon, 2012. "New Evidence on Linear Regression and Treatment Effect Heterogeneity," MPRA Paper 39524, University Library of Munich, Germany.
    17. Bakx, Pieter & Wouterse, Bram & van Doorslaer, Eddy & Wong, Albert, 2020. "Better off at home? Effects of nursing home eligibility on costs, hospitalizations and survival," Journal of Health Economics, Elsevier, vol. 73(C).
    18. Atonu Rabbani, 2017. "Can Leaders Promote Better Health Behavior? Learning from a Sanitation and Hygiene Communication Experiment in Rural Bangladesh," Working Papers id:11904, eSocialSciences.
    19. Ygué Patrice Adegbola1 & Baudelaire YF Kouton Bognon & Pélagie M Hessavi, 2020. "Economic Impact Assessment of Improved Maize Adoption on Poverty: Case Study of Four West African Countries," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 26(4), pages 134-141, November.
    20. Öberg, Stefan, 2018. "Instrumental variables based on twin births are by definition not valid (v.3.0)," SocArXiv zux9s, Center for Open Science.

    More about this item

    Keywords

    Regression; OLS; Gini; Transformation;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:116:y:2012:i:1:p:23-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.